X/Partial The Neuropathology Core (NP Core) is a component of the DeArmond Neuropathology Research Laboratory (NRL). NP Core directed by S. DeArmond is part of a remarkably productive collaboration with Stanley Prusiner for the past 24 years. The NP Core is particularly enthusiastic about this PPG proposal because of the results of a drug trial recently completed by the NRL in which PrPSc formation, axonal transport of PrPSc and dendrite degeneration were prevented by oral doses of a y-secretase inhibitor plus quinacrine. Residual PrPSc remained in brain regions that were the first to become infected by inoculation with prions and had accumulated high levels of PrPSc before treatment was begun. Such sites were niduses for restart of PrPSc formation. The NP Core will fulfill three basic functions: First, it will perform full autopsies on CJD patients and related controls. The basic goals are to verify the diagnosis and the immediate cause of death, and to dissect samples from the CNS, muscle, visceral organs and other sites as needed in Project 3. Second, quantitative morphological and neurochemical analysis of dissected brain regions during the course of CJD and other human prion diseases transmitted to guinea pigs and transgenic (Tg) mice will correlate the kinetics of PrPSc formation and accumulation in each brain region with the vacuolation, dendrite and presynaptic bouton degeneration;reactive astrocytic gliosis;activation of microglia;and nerve cell loss. These data will be correlated with non-invasive tests for PrPSc in blood and other systemic sites. The rodent models of human prion diseases will also allow us to test whether non-invasive peripheral measurements of abnormal PrPs or other proteins predict and correlate well with beneficial effects of emerging treatments of prion diseases that clear PrPSc from the brain and prevent neurodegeneration. Third, neuropathological verification of prion disease in hamsters, wild-type mice and Tg mice will be performed for Projects 1 and 2, which focus on the structure of PrPSc.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-2)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Tuttle, Marcus D; Comellas, Gemma; Nieuwkoop, Andrew J et al. (2016) Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat Struct Mol Biol 23:409-15
Watts, Joel C; Giles, Kurt; Saltzberg, Daniel J et al. (2016) Guinea Pig Prion Protein Supports Rapid Propagation of Bovine Spongiform Encephalopathy and Variant Creutzfeldt-Jakob Disease Prions. J Virol 90:9558-9569
Watts, Joel C; Giles, Kurt; Bourkas, Matthew E C et al. (2016) Towards authentic transgenic mouse models of heritable PrP prion diseases. Acta Neuropathol 132:593-610
Ahlenius, Henrik; Chanda, Soham; Webb, Ashley E et al. (2016) FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proc Natl Acad Sci U S A 113:8514-9
Giles, Kurt; Berry, David B; Condello, Carlo et al. (2016) Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice. J Pharmacol Exp Ther 358:537-47
Elkins, Matthew R; Wang, Tuo; Nick, Mimi et al. (2016) Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study. J Am Chem Soc 138:9840-52
Woerman, Amanda L; Aoyagi, Atsushi; Patel, Smita et al. (2016) Tau prions from Alzheimer's disease and chronic traumatic encephalopathy patients propagate in cultured cells. Proc Natl Acad Sci U S A 113:E8187-E8196
Lu, Jonathan; Trnka, Michael J; Roh, Soung-Hun et al. (2015) Improved Peak Detection and Deconvolution of Native Electrospray Mass Spectra from Large Protein Complexes. J Am Soc Mass Spectrom 26:2141-51
Tousseyn, Thomas; Bajsarowicz, Krystyna; Sánchez, Henry et al. (2015) Prion Disease Induces Alzheimer Disease-Like Neuropathologic Changes. J Neuropathol Exp Neurol 74:873-88
Shanmugasundaram, Maruda; Kurouski, Dmitry; Wan, William et al. (2015) Rapid Filament Supramolecular Chirality Reversal of HET-s (218-289) Prion Fibrils Driven by pH Elevation. J Phys Chem B 119:8521-5

Showing the most recent 10 out of 344 publications