Alzheimer's disease (AD) is the most common neurodegenerative disease with no effective means of prevention or treatment. Most of the recent published genetic studies for AD have focused on the identification of genetic variants associated with risk for disease. Other aspects of AD, such as age at onset, disease duration or rate of disease progression are less well studied. It is very likely that different genetic variants and genes will influence these different aspects of disease. The goal of this study is to identify novel genetic variants and genes associated with rate of disease progression and other informative endophenotypes for AD, such as amyloid imaging (Pittsburgh compound B or florbetapir) and hippocampal volume. We will use innovative genomic and statistical methods, to analyze not only the effect of common variants but also rare coding variants on endophenotype levels by incorporating genome-wide association data, whole-genome sequencing and exome-chip data into our analyses. We will also test whether the variants associated with rate of progression, amyloid imaging and hippocampal volume are also associated with risk for disease, cerebrospinal fluid tau and A? levels and other AD phenotypes. The broad, long-term goal of this research is to dissect the complex genetic architecture of Alzheimer's disease, which will lead to better prediction and treatment of this devastating disease. By studying several AD endophenotypes we expect to identify genetic variants, genes and pathways affecting different aspects of the disease. These findings will help to identify novel and key proteins involved in disease pathogenesis and potential therapeutic targets.

Public Health Relevance

As instructed by the funding opportunity announcement for this application (PAR-13-329), only the Overall component contains a project narrative. Cores and projects were instructed not to include this section.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG003991-31A1
Application #
8739017
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (M1))
Project Start
Project End
2019-04-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
31
Fiscal Year
2014
Total Cost
$153,142
Indirect Cost
$52,721
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Liao, Fan; Li, Aimin; Xiong, Monica et al. (2018) Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J Clin Invest 128:2144-2155
Jansen, Willemijn J; Ossenkoppele, Rik; Tijms, Betty M et al. (2018) Association of Cerebral Amyloid-? Aggregation With Cognitive Functioning in Persons Without Dementia. JAMA Psychiatry 75:84-95
Yan, Qi; Nho, Kwangsik; Del-Aguila, Jorge L et al. (2018) Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol Psychiatry :
Islam, Jyoti; Zhang, Yanqing (2018) Brain MRI analysis for Alzheimer's disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform 5:2
Strain, Jeremy F; Smith, Robert X; Beaumont, Helen et al. (2018) Loss of white matter integrity reflects tau accumulation in Alzheimer disease defined regions. Neurology 91:e313-e318
Roe, Catherine M; Ances, Beau M; Head, Denise et al. (2018) Incident cognitive impairment: longitudinal changes in molecular, structural and cognitive biomarkers. Brain 141:3233-3248
Ogren, Jennifer A; Tripathi, Raghav; Macey, Paul M et al. (2018) Regional cortical thickness changes accompanying generalized tonic-clonic seizures. Neuroimage Clin 20:205-215
Ihara, Ryoko; Vincent, Benjamin D; Baxter, Michael R et al. (2018) Relative neuron loss in hippocampal sclerosis of aging and Alzheimer's disease. Ann Neurol 84:741-753
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Sutphen, Courtney L; McCue, Lena; Herries, Elizabeth M et al. (2018) Longitudinal decreases in multiple cerebrospinal fluid biomarkers of neuronal injury in symptomatic late onset Alzheimer's disease. Alzheimers Dement 14:869-879

Showing the most recent 10 out of 911 publications