Estrogen (E) deficiency is the major cause of postmenopausal osteoporosis. Thus, understanding the mechanisms by which E regulates bone metabolism is critical for developing novel approaches to prevent and treat this disorder. This project focuses on better defining key, unresolved issues regarding E action on bone in women. While previous studies have demonstrated that E deficiency is associated with increased RANKL expression by osteoblastic cells, a major unresolved issue regarding the increase in bone resorption in women following the menopause is whether increased resorption is solely due to E deficiency or is augmented by the concomitant rise in circulating follicle-stimulating hormone (FSH) levels. Thus, in Specific Aim 1 we will test the hypothesis that FSH directly regulates bone resorption independently of E. In addition to regulating bone resorption, it is clear that E also has important effects on maintaining bone formation.
In Specific Aims 2 and 3, we focus on defining mechanisms for the age-related decrease in bone formation and the role of E deficiency in mediating this decrease. We will couple two novel in vivo human experimental paradigms with methods we have established to examine gene expression in highly purified bone marrow osteoblastic cells. Using quantitative polymerase chain reaction assays complemented by assessment of key functional and protein measurements by flow cytometry, we will test the hypothesis that there are both Edependent and E-independent defects in bone formation in aging women.
In Specific Aim 2, we will test whether the decrease in bone formation we have previously observed following acute E deficiency in women is associated with a decrease in markers of Wnt/BMP signaling and/or production and in other genes related to bone formation by osteoblastic cells.
In Specific Aim 3, we will test the hypothesis that there is an Eindependent defect in bone formation in elderly women and identify potential novel mechanisms for this agerelated impairment in bone formation. Collectively, these studies will lead to a better understanding of E action on bone, and are highly clinically relevant since they may identify new therapeutic targets to prevent and treat osteoporosis.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-8)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Drake, Matthew T; Khosla, Sundeep (2016) Hormonal and systemic regulation of sclerostin. Bone :
Rocca, Walter A; Gazzuola-Rocca, Liliana; Smith, Carin Y et al. (2016) Accelerated Accumulation of Multimorbidity After Bilateral Oophorectomy: A Population-Based Cohort Study. Mayo Clin Proc 91:1577-1589
McGee-Lawrence, Meghan E; Carpio, Lomeli R; Schulze, Ryan J et al. (2016) Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells. J Bone Miner Res 31:116-28
Farr, Joshua N; Khosla, Sundeep (2016) Determinants of bone strength and quality in diabetes mellitus in humans. Bone 82:28-34
Sellmeyer, Deborah E; Civitelli, Roberto; Hofbauer, Lorenz C et al. (2016) Skeletal Metabolism, Fracture Risk, and Fracture Outcomes in Type 1 and Type 2 Diabetes. Diabetes 65:1757-66
Nicks, Kristy M; Fujita, Koji; Fraser, Daniel et al. (2016) Deletion of Estrogen Receptor Beta in Osteoprogenitor Cells Increases Trabecular but Not Cortical Bone Mass in Female Mice. J Bone Miner Res 31:606-14
Schafer, Marissa J; Atkinson, Elizabeth J; Vanderboom, Patrick M et al. (2016) Quantification of GDF11 and Myostatin in Human Aging and Cardiovascular Disease. Cell Metab 23:1207-15
Weivoda, Megan M; Ruan, Ming; Hachfeld, Christine M et al. (2016) Wnt Signaling Inhibits Osteoclast Differentiation by Activating Canonical and Noncanonical cAMP/PKA Pathways. J Bone Miner Res 31:65-75
Weivoda, Megan M; Ruan, Ming; Pederson, Larry et al. (2016) Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation. J Bone Miner Res 31:76-85
Roforth, Matthew M; Farr, Joshua N; Fujita, Koji et al. (2015) Global transcriptional profiling using RNA sequencing and DNA methylation patterns in highly enriched mesenchymal cells from young versus elderly women. Bone 76:49-57

Showing the most recent 10 out of 371 publications