Bone resorption and bone formation appear to be tightly coupled. To explore osteoclast influences on osteoblast recruitment and differentiation, we examined osteoclast conditioned media (CM) for influences on osteoblasts. Osteoclast CM stimulated human mesenchymal stem (hMS) cell mineralized nodule formation. We identified candidate osteoclast-derived coupling factors using Affymetrix microarray. We observed induction of sphingosine kinase 1 (SPHK1), WntlOb, and BMP6 in mature multinucleated osteoclasts as compared to pre-osteoclasts. Stimulation of hMS cell nodule formation by the osteoclast CM was attenuated by the Wnt antagonist, Dkk1, a BMP-6 neutralizing antibody, and by a S1P antagonist. Sclerostin expression was elevated in osteoclast precursors and rapidly down-regulated during differentiation. CM from osteoclasts generated in vitro from 18-month old mice was unable to support hMS cell mineralization. TGF-beta treatment elevated SPHK1 and WntlOb expression. Our central hypothesis is that osteoclast production of SPHK1, WntlOb, and BMP6, combined with decreased Sclerostin expression, promotes osteoblast precursor recruitment, proliferation, differentiation, and survival and that each factor plays an integral role in maintaining coupling between osteoclast-mediated bone resorption and osteoblast-mediated bone formation.
In Aim 1, we will use functional cell assays and gene expression to ascertain the mechanisms by which osteoclast-derived coupling factors promote osteoblast gene expression, recruitment, proliferation, differentiation, and survival in vitro.
In Aim 2 we will use molecular approaches to determine the mechanisms by which Sclerostin, SPHK1, WntlOb, and BMP6 are modulated during osteoclast differentiation in vitro.
In Aim 3 we will use an in vivo model to examine the role of TGF-beta regulation of coupling factor production on osteoclast-mediated coupling of bone resorption to bone formation.
In Aim 4 we will examine gene expression and cellular assays to resolve the contribution of age in osteoclast support of osteoblast maturation and mineralization. Together, these studies will provide important novel information on how osteoclasts control osteoblast-mediated bone formation.

Public Health Relevance

A crucial question in bone biology is how osteoblasts are recruited to a resorption site and how the amount of bone laid down is controlled. Studies have implicated osteoclasts as important modulators of bone formation. Understanding the mechanisms by which osteoclasts influence osteoblast recruitment, differentiation, and survival will likely lead to more effective theapies to selectively promote bone formation.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG004875-30
Application #
8494474
Study Section
Special Emphasis Panel (ZAG1-ZIJ-8)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
30
Fiscal Year
2013
Total Cost
$266,554
Indirect Cost
$90,145
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Fujita, Koji; Xing, Qian; Khosla, Sundeep et al. (2014) Mutual enhancement of differentiation of osteoblasts and osteocytes occurs through direct cell-cell contact. J Cell Biochem 115:2039-44
Amin, Shreyasee; Achenbach, Sara J; Atkinson, Elizabeth J et al. (2014) Trends in fracture incidence: a population-based study over 20 years. J Bone Miner Res 29:581-9
Nakamura, K M; Haglind, E G C; Clowes, J A et al. (2014) Fracture risk following bariatric surgery: a population-based study. Osteoporos Int 25:151-8
Cassar, Andrew; Morgenthaler, Timothy I; Rihal, Charanjit S et al. (2014) Coronary endothelial function in patients with obstructive sleep apnea. Coron Artery Dis 25:16-22
Fujita, K; Roforth, M M; Atkinson, E J et al. (2014) Isolation and characterization of human osteoblasts from needle biopsies without in vitro culture. Osteoporos Int 25:887-95
Roforth, Matthew M; Fujita, Koji; McGregor, Ulrike I et al. (2014) Effects of age on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in humans. Bone 59:1-6
Pfeifer, Emily C; Crowson, Cynthia S; Amin, Shreyasee et al. (2014) The influence of early menopause on cardiovascular risk in women with rheumatoid arthritis. J Rheumatol 41:1270-5
Weivoda, Megan M; Oursler, Merry Jo (2014) Developments in sclerostin biology: regulation of gene expression, mechanisms of action, and physiological functions. Curr Osteoporos Rep 12:107-14
Farr, Joshua N; Khosla, Sundeep; Achenbach, Sara J et al. (2014) Diminished bone strength is observed in adult women and men who sustained a mild trauma distal forearm fracture during childhood. J Bone Miner Res 29:2193-202
Farr, Joshua N; Drake, Matthew T; Amin, Shreyasee et al. (2014) In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 29:787-95

Showing the most recent 10 out of 337 publications