The Biostatistical and Analytic Core (BAC) will provide advanced statistical and analytic support for all experimental projects within the Program Project Grant (PPG) and will be instrumental for achieving the overall aim of quantifying the relative contributions of sleep loss and circadian disruption on metabolism in healthy older people. To achieve this overall aim, the BAC will analyze data collected in the proposed PPG, as well as data across studies from the proposed, current, and previous PPGs and other studies conducted in the same facilities by PPG investigators. The integrative power of the PPG will therefore enable the BAC to extend the work of the individual experimental Projects by using data from multiple projects. This integration will allow more powerful and detailed statistical analyses, as well as cross-experiment analyses and comparisons that will enable stronger conclusions to be made about the effects of sleep loss and circadian disruption on physiology, metabolism and autonomic function in humans and rodents. The BAC specific aims are: (SA1) To conduct the primary and secondary statistical analyses for each of the individual projects within the PPG using state-of-the-art statistical and analytic methods for evaluating the specific aims of each individual project;(SA2 and SAS) To quantify the effects of sleep loss and circadian disruption, their interaction, and recovery from these exposures on various metrics of metabolism (SA2) and autonomic function (SAS) by using longitudinal analyses and by analyzing and comparing data across different experimental protocols. Analytic and statistical methods - along with the bio-mathematical models developed by the Analytic Cores within previous PPGs - have been used to design and to analyze most experiments in the Brigham and Women's Hospital (BWH) Division of Sleep Medicine (DSM). New methods are required because of the longitudinal, correlated, and frequently non-normal distributions of the data collected. Appropriate statistical and modeling techniques determine whether an intervention has a significant effect, and to enable extraction of additional information from previously collected data. Therefore, the BAC will support and greatly extend the results of the PPG experimental work.

Public Health Relevance

The BAC will provide biostatistical support to all projects, will apply analytic and statistical techniques to the complex, longitudinal, and frequently non-normally distributed and correlated data sets. By integrating data from multiple experiments, the BAC will quantify the relative contributions of sleep loss and circadian disruption on metabolism and autonomic function in older people and rodents.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-2 (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Lin, Chen; Chang, Yi-Chung; Cheng, Ya-Chen et al. (2016) Probing the Fractal Pattern of Heartbeats in Drosophila Pupae by Visible Optical Recording System. Sci Rep 6:31950
Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun (2016) Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals. Physica A 454:143-150
Vetrivelan, Ramalingam; Kong, Dong; Ferrari, Loris L et al. (2016) Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 336:102-113
Markt, Sarah C; Flynn-Evans, Erin E; Valdimarsdottir, Unnur A et al. (2016) Sleep Duration and Disruption and Prostate Cancer Risk: a 23-Year Prospective Study. Cancer Epidemiol Biomarkers Prev 25:302-8
Morris, Christopher J; Purvis, Taylor E; Hu, Kun et al. (2016) Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A 113:E1402-11
Klerman, Elizabeth B; Beckett, Scott A; Landrigan, Christopher P (2016) Applying mathematical models to predict resident physician performance and alertness on traditional and novel work schedules. BMC Med Educ 16:239
Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin et al. (2016) Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation. Front Physiol 7:174
Shaw, Natalie D; McHill, Andrew W; Schiavon, Michele et al. (2016) Effect of Slow Wave Sleep Disruption on Metabolic Parameters in Adolescents. Sleep 39:1591-9
Duffy, Jeanne F; Scheuermaier, Karine; Loughlin, Kevin R (2016) Age-Related Sleep Disruption and Reduction in the Circadian Rhythm of Urine Output: Contribution to Nocturia? Curr Aging Sci 9:34-43
Bermudez, Eduardo B; Klerman, Elizabeth B; Czeisler, Charles A et al. (2016) Prediction of Vigilant Attention and Cognitive Performance Using Self-Reported Alertness, Circadian Phase, Hours since Awakening, and Accumulated Sleep Loss. PLoS One 11:e0151770

Showing the most recent 10 out of 171 publications