The function of the Animal Core is to produce and maintain all of the animals required for the scientific projects for this and several other Program Project grants. The specific services provided by the Animal Core personnel include: (1) production of transgenic and knockout mice; (2) production of large volumes of prion-infected hamster and mouse brains for purification; (3) performing experimental inoculations, neurologic scoring of animals, data collection, and tissue collection; (4) providing transportation of animals and tissues between the laboratory and the animal facility; (5) production of antibodies in mice and rabbits for experimental use; (6) providing all animal care and veterinary care; (7) providing cryopreservation of the various mouse lines. The Animal Core operates in two purpose-built facilities in the Hunters Point area of San Francisco, located approximately 3 miles from the main UCSF campus. The activities of the Animal Core are directed by Dr. Prusiner and Dr. Pierre Lessard, a laboratory animal veterinarian. Building 830B is a new nine-room transgenic mouse breeding facility that houses our large breeding colony. Building 830 houses all the experimental animals in 21 rooms, under BSL-2 and BSL-3 biocontainment. It houses, on average, 20,000 mice, 400 hamsters, and 3 rabbits. The facility is inspected bi-annually by the USDA and UCSF/IACUC.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG010770-13
Application #
6944650
Study Section
Special Emphasis Panel (ZAG1-ZIJ-7 (J1))
Project Start
1997-07-15
Project End
2010-06-30
Budget Start
1997-07-15
Budget End
2006-06-30
Support Year
13
Fiscal Year
2005
Total Cost
$342,920
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
O'Brien, Connor J; Droege, Daniel G; Jiu, Alexander Y et al. (2018) Photoredox Cyanomethylation of Indoles: Catalyst Modification and Mechanism. J Org Chem 83:8926-8935
Condello, Carlo; Lemmin, Thomas; Stöhr, Jan et al. (2018) Structural heterogeneity and intersubject variability of A? in familial and sporadic Alzheimer's disease. Proc Natl Acad Sci U S A 115:E782-E791
Woerman, Amanda L; Kazmi, Sabeen A; Patel, Smita et al. (2018) MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol 135:49-63
Lim, Kwang Hun; Dasari, Anvesh K R; Hung, Ivan et al. (2016) Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR. Biochemistry 55:1941-4
Elkins, Matthew R; Wang, Tuo; Nick, Mimi et al. (2016) Structural Polymorphism of Alzheimer's ?-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study. J Am Chem Soc 138:9840-52
Watts, Joel C; Giles, Kurt; Saltzberg, Daniel J et al. (2016) Guinea Pig Prion Protein Supports Rapid Propagation of Bovine Spongiform Encephalopathy and Variant Creutzfeldt-Jakob Disease Prions. J Virol 90:9558-9569
Dunn, Joshua G; Weissman, Jonathan S (2016) Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genomics 17:958
Giles, Kurt; Berry, David B; Condello, Carlo et al. (2016) Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice. J Pharmacol Exp Ther 358:537-47
Patzke, Christopher; Acuna, Claudio; Giam, Louise R et al. (2016) Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med 213:499-515
Ahlenius, Henrik; Chanda, Soham; Webb, Ashley E et al. (2016) FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proc Natl Acad Sci U S A 113:8514-9

Showing the most recent 10 out of 179 publications