Neuropathology Cores directed by Dr. DeArmond have been part of Stanley Prusiner PPGs for the past 25 years. The overall goal has been to test the hypothesis that emerged from Dr. DeArmond's early correlative kinetic studies of PrP[Sc] neurochemistry, PrP{Sc] imunohistochemistry, and neuropathological analysis during the course of prion diseases, which stated that formation and accumulation of PrP[Sc] in neurons are the cause ofthe clinically relevant neuropathological changes. All of our evidence today suggests that neurodegeneration in prion diseases progresses in stereotypical sequence of pathogenic events that underlies neurological dysfunction and degeneration in prion disease. The sequence encompasses a progression of functional and neuropathological changes that begin with formation and accumulation abnormal protease resistant PrP[Sc] in neurons, proceeds rapidly to synaptic degeneration as PrPSc[ Sc]accumulates in plasma membranes, and terminates in autophagic nerve cell death when PrP[Sc] accumulates in lysosomes and autophagosomes. The main theme of this PPG's Projects is prion strains. Project 1 proposes to create multiple synthetic prions and compare their physical characteristics with their pathologic phenotype in transgenic mice. In Project 2, yeast prions Sc4 and Sc37 will be mutated to test their ability to infect mammalian cells in vitro and in vivo. Project 3 proposes to use """"""""induced neuronal cells"""""""" (iN cells) carrying mutations in genes associated with neurodegeneration, such as APP, presenilin-1 and tau, and test whether the gene mutations predispose them for prion-like infection. The Neuropathology Core has all techniques and expertise to analyze the tissues provided to us. The resulting pathologies may be novel.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG010770-20
Application #
8448172
Study Section
Special Emphasis Panel (ZAG1-ZIJ-6)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
20
Fiscal Year
2013
Total Cost
$147,996
Indirect Cost
$52,648
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Watts, Joel C; Giles, Kurt; Saltzberg, Daniel J et al. (2016) Guinea Pig Prion Protein Supports Rapid Propagation of Bovine Spongiform Encephalopathy and Variant Creutzfeldt-Jakob Disease Prions. J Virol 90:9558-9569
Watts, Joel C; Giles, Kurt; Bourkas, Matthew E C et al. (2016) Towards authentic transgenic mouse models of heritable PrP prion diseases. Acta Neuropathol 132:593-610
Ahlenius, Henrik; Chanda, Soham; Webb, Ashley E et al. (2016) FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proc Natl Acad Sci U S A 113:8514-9
Dunn, Joshua G; Weissman, Jonathan S (2016) Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genomics 17:958
Patzke, Christopher; Acuna, Claudio; Giam, Louise R et al. (2016) Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med 213:499-515
Giles, Kurt; Berry, David B; Condello, Carlo et al. (2016) Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice. J Pharmacol Exp Ther 358:537-47
Elkins, Matthew R; Wang, Tuo; Nick, Mimi et al. (2016) Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study. J Am Chem Soc 138:9840-52
Lim, Kwang Hun; Dasari, Anvesh K R; Hung, Ivan et al. (2016) Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid. Biochemistry 55:5272-8
Lim, Kwang Hun; Dasari, Anvesh K R; Hung, Ivan et al. (2016) Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR. Biochemistry 55:1941-4
Levine, Dana J; Stöhr, Jan; Falese, Lillian E et al. (2015) Mechanism of scrapie prion precipitation with phosphotungstate anions. ACS Chem Biol 10:1269-77

Showing the most recent 10 out of 175 publications