The objective of this renewal application is three-fold. First, we plan to capitalize on our accomplishments in the last 10 years and provide a comprehensive dissection of the contribution of age-related changes in other organs or tissues (e.g., ovaries, bone marrow, adrenals), and the cellular and molecular mechanisms behind them, to the age-related loss of bone mass and strength versus the contribution of skeletal aging per se. Second, we will establish the impact of aging on various qualitative aspects of bone strength, including microarchitecture, prevalence of fatigue damage, bone turnover, and osteocyte number. Third, we will investigate the relative efficacy and mechanistic appropriateness of different therapeutic modalities on the aging skeleton in the context of the specific pathogenetic factors that contribute to age-associated osteoporosis. To achieve the goal of the Program, four Projects (supported by three Cores) will address, in a thematic and systematic manner, closely interrelated hypotheses, which will be tested using a variety of molecular and cell biology approaches, as well as normally aging C57BL/6 mice, and several other transgenic and knockout mice. In Project 1, the contribution of estrogen loss to the age-related loss of bone mass and strength will be investigated by exploring the molecular mechanisms of the skeletal effects of estrogens in old age, and in particular, the compelling link among the antioxidant properties of estrogens, cytoplasmic kinase-mediated estrogen actions, reactive oxygen species, and the birth and death of bone cells with old age. Project 2 will examine the contribution of oxidized lipids (and the enzymes responsible for their generation, e.g., Alox15, or the transcription factors that mediate their actions, e.g., PPARy), to the decreased osteoblastogenesis and increased adipogenesis that occurs with old age;and the exciting possibility that daily injections of PTH are rational therapy for age-related osteoporosis because they ameliorate the adverse effects of reactive oxygen species and oxidized lipids on osteoblast apoptosis. Project 3 will seek a mechanistic explanation for why age is a far more critical risk factor for fractures than bone mineral density. Specifically, we will study the impact of the age-related increase in glucocorticoid production on the integrity of the osteocyte/lacunarcanalicular system, fluid flow, material properties and the accumulation of damaged bone;and the contribution of these factors on the mismatch between bone strength and BMD. Finally, Project 4 will explore the possibility that reduced mechanical forces during aging (from reduced physical activity) increase osteocyte apoptosis and this leads to deterioration of bone quality and an aberrant repair process, both of which contribute to decreased bone strength. This work should help us better understand why elderly people suffer from osteoporosis a lot more than young people;and perhaps identify the optimal anti-osteoporosis therapy for this particular segment of the population.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG013918-14
Application #
7628481
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5 (J2))
Program Officer
Williams, John
Project Start
1997-06-01
Project End
2011-05-31
Budget Start
2009-06-15
Budget End
2010-05-31
Support Year
14
Fiscal Year
2009
Total Cost
$1,579,736
Indirect Cost
Name
University of Arkansas for Medical Sciences
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Farr, Joshua N; Almeida, Maria (2018) The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. J Bone Miner Res 33:1568-1584
Weinstein, Robert S; Hogan, Erin A; Borrelli, Michael J et al. (2017) The Pathophysiological Sequence of Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Male Mice. Endocrinology 158:3817-3831
Kim, Ha-Neui; Chang, Jianhui; Shao, Lijian et al. (2017) DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 16:693-703
Ucer, Serra; Iyer, Srividhya; Kim, Ha-Neui et al. (2017) The Effects of Aging and Sex Steroid Deficiency on the Murine Skeleton Are Independent and Mechanistically Distinct. J Bone Miner Res 32:560-574
Iyer, Srividhya; Han, Li; Ambrogini, Elena et al. (2017) Deletion of FoxO1, 3, and 4 in Osteoblast Progenitors Attenuates the Loss of Cancellous Bone Mass in a Mouse Model of Type 1 Diabetes. J Bone Miner Res 32:60-69
Almeida, Maria; Laurent, Michaƫl R; Dubois, Vanessa et al. (2017) Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 97:135-187
Piemontese, Marilina; Almeida, Maria; Robling, Alexander G et al. (2017) Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight 2:
Piemontese, Marilina; Xiong, Jinhu; Fujiwara, Yuko et al. (2016) Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice. Am J Physiol Endocrinol Metab 311:E587-93
Fujiwara, Toshifumi; Ye, Shiqiao; Castro-Gomes, Thiago et al. (2016) PLEKHM1/DEF8/RAB7 complex regulates lysosome positioning and bone homeostasis. JCI Insight 1:e86330
Fujiwara, T; Zhou, J; Ye, S et al. (2016) RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival. Cell Death Dis 7:e2300

Showing the most recent 10 out of 162 publications