Understanding the onset of Alzheimer's disease (AD) requires the development of new research methods, which can be applied to preclinical disease and for the generation of new as well as the improvement of currently available drugs such as those which augment cholinergic neurotransmission early in the progression of AD. During the current five years of the PPG, subproject 2 has pioneered methods for using liquid chromatography coupled with tandem mass spectrometry for proteomic examination of brain tissue to study the proteome of AD during disease progression. These efforts led to the discovery of pathological accumulations of components of the Ul small nuclear ribonucleoprotein (Ul snRNP) and global disruption of RNA processing in Alzheimer's disease (AD). We will apply these innovative proteomics approaches along with well-established biochemical and immuohistochemical methods to 1) define pathological accumulations of Ul snRNP within the cortical regions which compose the memory default network which receive extensive cholinergic innervation from the long cortical cholinergic projection neurons located within the subfields of the nucleus basalis of Meynert during progression of AD, 2) Identify changes in Ul snRNP components, posttranslational modifications of tau, and novel proteins that define cholinergic basal forebrain neuron subfield dysfunction that follows a caudal to rostral progression the during progression of AD, and 3) examine changes In RNA processing linked to Ul snRNP pathology within the cholinergic basal forebrain neurons during the progression of AD. The proposed studies will improve our understanding ofthe role of Ul snRNP in the development and progression of AD, and likely to identify novel mediators of disease. Such advances are critical to advancing our understanding of AD and the development of more effective therapeutics.

Public Health Relevance

AD represents an enormous societal challenge. Successful identification and refinement of therapeutic targets at the earliest stages of disease will be essential in improving our ability to manage this devastating disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG014449-16
Application #
8619878
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
16
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Rush University Medical Center
Department
Type
DUNS #
City
Chicago
State
IL
Country
United States
Zip Code
Mahady, Laura; Nadeem, Muhammad; Malek-Ahmadi, Michael et al. (2018) Frontal Cortex Epigenetic Dysregulation During the Progression of Alzheimer's Disease. J Alzheimers Dis 62:115-131
Mufson, Elliott J; He, Bin; Ginsberg, Stephen D et al. (2018) Gene Profiling of Nucleus Basalis Tau Containing Neurons in Chronic Traumatic Encephalopathy: A Chronic Effects of Neurotrauma Consortium Study. J Neurotrauma 35:1260-1271
Alldred, Melissa J; Chao, Helen M; Lee, Sang Han et al. (2018) CA1 pyramidal neuron gene expression mosaics in the Ts65Dn murine model of Down syndrome and Alzheimer's disease following maternal choline supplementation. Hippocampus 28:251-268
Jeanneteau, Freddy; Barrère, Christian; Vos, Mariska et al. (2018) The Stress-Induced Transcription Factor NR4A1 Adjusts Mitochondrial Function and Synapse Number in Prefrontal Cortex. J Neurosci 38:1335-1350
Mahady, L; Nadeem, M; Malek-Ahmadi, M et al. (2018) HDAC2 dysregulation in the nucleus basalis of Meynert during the progression of Alzheimer's disease. Neuropathol Appl Neurobiol :
Peng, Katherine Y; Pérez-González, Rocío; Alldred, Melissa J et al. (2018) Apolipoprotein E4 genotype compromises brain exosome production. Brain :
Ginsberg, Stephen D; Alldred, Melissa J; Gunnam, Satya M et al. (2018) Expression profiling suggests microglial impairment in human immunodeficiency virus neuropathogenesis. Ann Neurol 83:406-417
Tiernan, Chelsea T; Ginsberg, Stephen D; He, Bin et al. (2018) Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer's disease. Neurobiol Dis 117:125-136
Kaur, Gurjinder; Gauthier, Sebastien A; Perez-Gonzalez, Rocio et al. (2018) Cystatin C prevents neuronal loss and behavioral deficits via the endosomal pathway in a mouse model of down syndrome. Neurobiol Dis 120:165-173
Jansen, Willemijn J; Wilson, Robert S; Visser, Pieter Jelle et al. (2018) Age and the association of dementia-related pathology with trajectories of cognitive decline. Neurobiol Aging 61:138-145

Showing the most recent 10 out of 293 publications