Understanding the onset of Alzheimer's disease (AD) requires the development of new research methods, which can be applied to preclinical disease and for the generation of new as well as the improvement of currently available drugs such as those which augment cholinergic neurotransmission early in the progression of AD. During the current five years of the PPG, subproject 2 has pioneered methods for using liquid chromatography coupled with tandem mass spectrometry for proteomic examination of brain tissue to study the proteome of AD during disease progression. These efforts led to the discovery of pathological accumulations of components of the Ul small nuclear ribonucleoprotein (Ul snRNP) and global disruption of RNA processing in Alzheimer's disease (AD). We will apply these innovative proteomics approaches along with well-established biochemical and immuohistochemical methods to 1) define pathological accumulations of Ul snRNP within the cortical regions which compose the memory default network which receive extensive cholinergic innervation from the long cortical cholinergic projection neurons located within the subfields of the nucleus basalis of Meynert during progression of AD, 2) Identify changes in Ul snRNP components, posttranslational modifications of tau, and novel proteins that define cholinergic basal forebrain neuron subfield dysfunction that follows a caudal to rostral progression the during progression of AD, and 3) examine changes In RNA processing linked to Ul snRNP pathology within the cholinergic basal forebrain neurons during the progression of AD. The proposed studies will improve our understanding ofthe role of Ul snRNP in the development and progression of AD, and likely to identify novel mediators of disease. Such advances are critical to advancing our understanding of AD and the development of more effective therapeutics.

Public Health Relevance

AD represents an enormous societal challenge. Successful identification and refinement of therapeutic targets at the earliest stages of disease will be essential in improving our ability to manage this devastating disease.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rush University Medical Center
United States
Zip Code
Kelly, Sarah C; He, Bin; Perez, Sylvia E et al. (2017) Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease. Acta Neuropathol Commun 5:8
McKay, Erin; Counts, Scott E (2017) Multi-Infarct Dementia: A Historical Perspective. Dement Geriatr Cogn Dis Extra 7:160-171
Perez, Sylvia E; Nadeem, Muhammad; Malek-Ahmadi, Michael H et al. (2017) Frontal Cortex and Hippocampal ?-Secretase Activating Protein Levels in Prodromal Alzheimer Disease. Neurodegener Dis 17:235-241
Marquié, Marta; Normandin, Marc D; Meltzer, Avery C et al. (2017) Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies. Ann Neurol 81:117-128
Ikonomovic, Milos D; Mi, Zhiping; Abrahamson, Eric E (2017) Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders. Ageing Res Rev 34:51-63
Krivinko, Josh M; Erickson, Susan L; Abrahamson, Eric E et al. (2017) Kalirin reduction rescues psychosis-associated behavioral deficits in APPswe/PSEN1dE9 transgenic mice. Neurobiol Aging 54:59-70
Sorrentino, Vincenzo; Romani, Mario; Mouchiroud, Laurent et al. (2017) Enhancing mitochondrial proteostasis reduces amyloid-? proteotoxicity. Nature 552:187-193
Mahady, Laura J; Perez, Sylvia E; Emerich, Dwaine F et al. (2017) Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain. J Comp Neurol 525:553-573
Counts, Scott E; Mufson, Elliott J (2017) Regulator of Cell Cycle (RGCC) Expression During the Progression of Alzheimer's Disease. Cell Transplant 26:693-702
Powers, Brian E; Kelley, Christy M; Velazquez, Ramon et al. (2017) Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring. Neuroscience 340:501-514

Showing the most recent 10 out of 270 publications