Alphabeta generation occurs via serial cleavage of APP by p- and gamma-secretase, but is precluded via serial cleavage by alpha- and gamma-secretase. Project 1 (Selkoe/Wolfe) has generated evidence for an alpha/gamma-secretase complex, which we have termed the """"""""sheddasome"""""""". In this project, we will explore factors that can modulate the sheddasome either pharmacologically (using novel gamma-secretase modulators [GSM]), or genetically (using novel late-onset Alzheimer's disease [LOAD] mutations in ADAMVO which we discovered during the current PPG period). In our first set of aims, we will carry out studies of a novel series of highly potent, APP-specific GSMs. These GSMs are aryl 2-aminothiazole GSMs that bind directly to the gamma-secretase complex, decreasing AP42 and AP40 levels and increasing APas and AP37 levels. This project will serve to leverage an independent ongoing project on these GSMs supported by the NIH Blueprint Neurotherapeutics Network (NIH-BNN). While we receive no funding from the NIH-BNN, we co-developed these GSM'and serve as close collaborators and Lead Development Team members for the project. As part of Aim 1, in collaboration with Project 1, we will test for the effects of these novel GSMs on gamma-secretase preparations, including gamma-secretase- enriched membranes and sheddasome complexes. We will also test whether the GSMs allosterically impact PS1 conformation in the gamma-secretase complex in collaboration with Project 3 (Berezovska/Hyman). Finally, we will test for the potency and substrate selectivity of these GSMs in collaboration with Project 4 (Kovacs). In the second set of aims, we will characterize two rare LOAD missense mutations in the prodomain oi ADAMIO, which we have already shown to tightly co-segregate with LOAD in 7 families (age of onset ~70 yr). We have also shown that both of these mutations significantly attenuate alpha-secretase activity and elevate alphabeta levels (relative to wild-type) in vitro and in vivo. We have already generated transgenic mice overexpressing either wild-type (WT) or mutant (Q170H;R181G; dominant-negative) forms of ADAMIO. We will use these animal models to identify physiologic ADAM 10 substrates, and characterize their serial cleavage by gamma-secretase (with Project 4). In collaboration with Project 1, we will test whether the LOAD and dominant negative mutations in ADAMIO affect the interaction of ADAM10 with gamma-secretase in the sheddasome.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-6 (02))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Zoltowska, Katarzyna Marta; Berezovska, Oksana (2017) Dynamic Nature of presenilin1/?-Secretase: Implication for Alzheimer's Disease Pathogenesis. Mol Neurobiol :
Gong, Yi; Sasidharan, Nikhil; Laheji, Fiza et al. (2017) Microglial dysfunction as a key pathological change in adrenomyeloneuropathy. Ann Neurol 82:813-827
Kara, Eleanna; Marks, Jordan D; Fan, Zhanyun et al. (2017) Isoform- and cell type-specific structure of apolipoprotein E lipoparticles as revealed by a novel Forster resonance energy transfer assay. J Biol Chem 292:14720-14729
Raven, Frank; Ward, Joseph F; Zoltowska, Katarzyna M et al. (2017) Soluble Gamma-secretase Modulators Attenuate Alzheimer's ?-amyloid Pathology and Induce Conformational Changes in Presenilin 1. EBioMedicine 24:93-101
Wagner, Steven L; Rynearson, Kevin D; Duddy, Steven K et al. (2017) Pharmacological and Toxicological Properties of the Potent Oral ?-Secretase Modulator BPN-15606. J Pharmacol Exp Ther 362:31-44
Yang, Ting; Li, Shaomin; Xu, Huixin et al. (2017) Large Soluble Oligomers of Amyloid ?-Protein from Alzheimer Brain Are Far Less Neuroactive Than the Smaller Oligomers to Which They Dissociate. J Neurosci 37:152-163
Ward, Joseph; Wang, Haizhi; Saunders, Aleister J et al. (2017) Mechanisms that synergistically regulate ?-secretase processing of APP and A?-? protein levels: relevance to pathogenesis and treatment of Alzheimer's disease. Discov Med 23:121-128
Zoltowska, Katarzyna Marta; Maesako, Masato; Lushnikova, Iryna et al. (2017) Dynamic presenilin 1 and synaptotagmin 1 interaction modulates exocytosis and amyloid ? production. Mol Neurodegener 12:15
Bolduc, D M; Selkoe, D J; Wolfe, M S (2017) Enzymatic Assays for Studying Intramembrane Proteolysis. Methods Enzymol 584:295-308
Williamson, Rebecca L; Laulagnier, Karine; Miranda, André M et al. (2017) Disruption of amyloid precursor protein ubiquitination selectively increases amyloid ? (A?) 40 levels via presenilin 2-mediated cleavage. J Biol Chem 292:19873-19889

Showing the most recent 10 out of 139 publications