Cognitive aging in women is closely related to age-related changes in neuroendocrine systems, particulariy the loss of circulating ovarian steroid hormones that occurs in menopause. Surprising findings from the Women's Health Initiative Memory Study showed that hormone treatment (HT) begun long after the onset of menopause failed to improve cognition and may have been harmful. This contrasts with other studies indicating beneficial cognitive effects of HT begun soon after the onset of menopause. To reconcile these findings a 'window of opportunity'hypothesis has been proposed, such that there is a limited period of fime after menopause during which HT may improve cognifion. Because of other health risks associated with long-term HT including cardiovascular disease and cancer, current advice is for women to take a short course of HT at the onset of menopause and then disconfinue it. We will test, in a well-characterized animal model, whether beneficial cognitive effects of HT (on spatiotemporal working memory, visual recognition memory, and vulnerability to distraction) persist after discontinuation of HT, and whether they are sfill observed when HT is begun after a long delay post-menopause. In vivo neuroimaging analyses conducted concurrently with behavioral tesfing will measure neurobiological changes in parallel with cognitive ability. This study will test the 'window of opportunity'hypothesis explicitly, as well as whether cognitiye benefits can be maintained after withdrawal of HT. These studies will provide critical translational insights into how HT can improve cognitive outcomes of aging.

Public Health Relevance

Hormone replacement therapy in women after menopause can improve brain funcfion, including memory. We will test, in an animal model, how the fiming of hormone therapy after menopause affects its ability to improve brain function, both in terms of whether therapy must begin soon after menopause to be effective, and whether its beneficial effects persist after therapy is discontinued. These studies will help us maintain best brain and memory function in women as they age.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-9)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Icahn School of Medicine at Mount Sinai
New York
United States
Zip Code
Naugle, Michelle M; Lozano, Sateria A; Guarraci, Fay A et al. (2016) Age and Long-Term Hormone Treatment Effects on the Ultrastructural Morphology of the Median Eminence of Female Rhesus Macaques. Neuroendocrinology 103:650-64
Garcia, Alexandra N; Depena, Christina K; Yin, Weiling et al. (2016) Testing the critical window of estradiol replacement on gene expression of vasopressin, oxytocin, and their receptors, in the hypothalamus of aging female rats. Mol Cell Endocrinol 419:102-12
Almey, Anne; Milner, Teresa A; Brake, Wayne G (2016) Estrogen receptor α and G-protein coupled estrogen receptor 1 are localized to GABAergic neurons in the dorsal striatum. Neurosci Lett 622:118-23
Mazid, Sanoara; Hall, Baila S; Odell, Shannon C et al. (2016) Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress. Neurobiol Stress 5:37-53
Marques-Lopes, Jose; Lynch, Mary-Katherine; Van Kempen, Tracey A et al. (2015) Female protection from slow-pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors. Synapse 69:148-65
Yin, Weiling; Sun, Zengrong; Mendenhall, John M et al. (2015) Expression of Vesicular Glutamate Transporter 2 (vGluT2) on Large Dense-Core Vesicles within GnRH Neuroterminals of Aging Female Rats. PLoS One 10:e0129633
Waters, Elizabeth M; Thompson, Louisa I; Patel, Parth et al. (2015) G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus. J Neurosci 35:2384-97
Yin, Weiling; Maguire, Sean M; Pham, Brian et al. (2015) Testing the Critical Window Hypothesis of Timing and Duration of Estradiol Treatment on Hypothalamic Gene Networks in Reproductively Mature and Aging Female Rats. Endocrinology 156:2918-33
Almey, Anne; Milner, Teresa A; Brake, Wayne G (2015) Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav 74:125-38
Hara, Yuko; Waters, Elizabeth M; McEwen, Bruce S et al. (2015) Estrogen Effects on Cognitive and Synaptic Health Over the Lifecourse. Physiol Rev 95:785-807

Showing the most recent 10 out of 120 publications