(PROJECT 1) The central hypothesis of this program grant is that endogenous DNA damage is a major contributor to the aging process via induction of DNA damage responses and their biological outcomes, such as altered activity of cellular processes, mutations and epigenetic changes, apoptosis and cellular senescence. Project 1 previously established several mouse models with defects in DNA repair, which have an accelerated aging phenotype. In the current grant, we demonstrated with Core B that dietary restriction (DR) enormously prolongs lifespan and health of accelerated aging mouse models. This is important, because this provide us a competitive edge to study the mechanism of DR in a 5-10 fold shorter timeframe. Within the context of this renewal application, we will focus in specific aim 1 on the underlying mechanisms of DR. In collaboration with Project 2 and 3 we will address the hypothesis whether DR acts by reducing the DNA damage load via improved DNA damage repair and signaling including its downstream consequences ((epi)mutations, cellular senescence, apoptosis) or via reduced generation or enhanced scavenging of endogenous reactive metabolites such as reactive oxygen species or advanced glycation endproducts. Furthermore, we will extensively delineate molecular and cellular changes in response to DR with the aim to identify novel therapeutic targets.
In specific aim 2, we will follow up on a recent discovery in which we identified a microRNA signature for aging across several wild type aged mouse organs, which is directly upregulated by transcription- blocking DNA lesions. One of the main functions of these microRNAs is to repress cell death and maintain cell viability in the presence of unrepaired DNA damage, a process we have designated 'cell preservation'. Strikingly, Project 4 has identified induction of many cell preservation microRNAs in extreme human longevity, suggesting that cell preservation is associated with healthy aging. In collaboration with project 2, 3, 4 and core B we will further study microRNA-based cell preservation by silencing these microRNAs in accelerated aging mice to determine a causal role in aging. In addition, we will study the molecular basis of cell preservation and determine associated cellular aging phenotypes such as inflammation, energy metabolism and mutation frequencies. The results from these specific aims will provide new insight into the role of DNA damage in aging and mechanisms underlying DR.

Public Health Relevance

(PROJECT 1) Aging and age-related diseases are one of the major challenges for health care in industrialized societies. Understanding the molecular and cellular basis of aging is a prerequisite for designing interventions. We have established a strong link between DNA damage and aging using accelerated aging mouse models, which will be employed for rapidly intervention screening and delineating the molecular basis of aging.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
United States
Zip Code
Lau, Cia-Hin; Suh, Yousin (2016) Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease. Gerontology :
Andriani, Grasiella A; Faggioli, Francesca; Baker, Darren et al. (2016) Whole chromosome aneuploidy in the brain of Bub1bH/H and Ercc1-/Δ7 mice. Hum Mol Genet 25:755-65
Sepe, Sara; Milanese, Chiara; Gabriels, Sylvia et al. (2016) Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease. Cell Rep 15:1866-75
Kruiswijk, F; Hasenfuss, S C; Sivapatham, R et al. (2016) Targeted inhibition of metastatic melanoma through interference with Pin1-FOXM1 signaling. Oncogene 35:2166-77
Ryu, Seungjin; Atzmon, Gil; Barzilai, Nir et al. (2016) Genetic landscape of APOE in human longevity revealed by high-throughput sequencing. Mech Ageing Dev 155:7-9
Kato, Kaori; Zweig, Richard; Schechter, Clyde B et al. (2016) Positive attitude toward life, emotional expression, self-rated health, and depressive symptoms among centenarians and near-centenarians. Aging Ment Health 20:930-9
Quispe-Tintaya, Wilber; Gorbacheva, Tatyana; Lee, Moonsook et al. (2016) Quantitative detection of low-abundance somatic structural variants in normal cells by high-throughput sequencing. Nat Methods 13:584-6
Gravina, Silvia; Dong, Xiao; Yu, Bo et al. (2016) Single-cell genome-wide bisulfite sequencing uncovers extensive heterogeneity in the mouse liver methylome. Genome Biol 17:150
Vermeij, Wilbert P; Hoeijmakers, Jan H J; Pothof, Joris (2016) Genome Integrity in Aging: Human Syndromes, Mouse Models, and Therapeutic Options. Annu Rev Pharmacol Toxicol 56:427-45
Vijg, Jan; Kennedy, Brian K (2016) The Essence of Aging. Gerontology 62:381-5

Showing the most recent 10 out of 224 publications