(PROJECT 1) The central hypothesis of this program grant is that endogenous DNA damage is a major contributor to the aging process via induction of DNA damage responses and their biological outcomes, such as altered activity of cellular processes, mutations and epigenetic changes, apoptosis and cellular senescence. Project 1 previously established several mouse models with defects in DNA repair, which have an accelerated aging phenotype. In the current grant, we demonstrated with Core B that dietary restriction (DR) enormously prolongs lifespan and health of accelerated aging mouse models. This is important, because this provide us a competitive edge to study the mechanism of DR in a 5-10 fold shorter timeframe. Within the context of this renewal application, we will focus in specific aim 1 on the underlying mechanisms of DR. In collaboration with Project 2 and 3 we will address the hypothesis whether DR acts by reducing the DNA damage load via improved DNA damage repair and signaling including its downstream consequences ((epi)mutations, cellular senescence, apoptosis) or via reduced generation or enhanced scavenging of endogenous reactive metabolites such as reactive oxygen species or advanced glycation endproducts. Furthermore, we will extensively delineate molecular and cellular changes in response to DR with the aim to identify novel therapeutic targets.
In specific aim 2, we will follow up on a recent discovery in which we identified a microRNA signature for aging across several wild type aged mouse organs, which is directly upregulated by transcription- blocking DNA lesions. One of the main functions of these microRNAs is to repress cell death and maintain cell viability in the presence of unrepaired DNA damage, a process we have designated 'cell preservation'. Strikingly, Project 4 has identified induction of many cell preservation microRNAs in extreme human longevity, suggesting that cell preservation is associated with healthy aging. In collaboration with project 2, 3, 4 and core B we will further study microRNA-based cell preservation by silencing these microRNAs in accelerated aging mice to determine a causal role in aging. In addition, we will study the molecular basis of cell preservation and determine associated cellular aging phenotypes such as inflammation, energy metabolism and mutation frequencies. The results from these specific aims will provide new insight into the role of DNA damage in aging and mechanisms underlying DR.

Public Health Relevance

(PROJECT 1) Aging and age-related diseases are one of the major challenges for health care in industrialized societies. Understanding the molecular and cellular basis of aging is a prerequisite for designing interventions. We have established a strong link between DNA damage and aging using accelerated aging mouse models, which will be employed for rapidly intervention screening and delineating the molecular basis of aging.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
United States
Zip Code
Han, Jeehae; Atzmon, Gil; Barzilai, Nir et al. (2015) Genetic variation in Sirtuin 1 (SIRT1) is associated with lipid profiles but not with longevity in Ashkenazi Jews. Transl Res 165:480-1
Raj, Divya D A; Jaarsma, Dick; Holtman, Inge R et al. (2014) Priming of microglia in a DNA-repair deficient model of accelerated aging. Neurobiol Aging 35:2147-60
Choi, Yong Jun; Li, Han; Son, Mi Young et al. (2014) Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair. PLoS One 9:e86358
Barnhoorn, Sander; Uittenboogaard, Lieneke M; Jaarsma, Dick et al. (2014) Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency. PLoS Genet 10:e1004686
Akman, Kemal; Haaf, Thomas; Gravina, Silvia et al. (2014) Genome-wide quantitative analysis of DNA methylation from bisulfite sequencing data. Bioinformatics 30:1933-4
Jung, Hwa Jin; Suh, Yousin (2014) Circulating miRNAs in ageing and ageing-related diseases. J Genet Genomics 41:465-72
Campisi, Judith; Robert, Ladislas (2014) Cell senescence: role in aging and age-related diseases. Interdiscip Top Gerontol 39:45-61
Derks, Kasper W J; Hoeijmakers, Jan H J; Pothof, Joris (2014) The DNA damage response: the omics era and its impact. DNA Repair (Amst) 19:214-20
Campisi, Judith (2014) Cell biology: The beginning of the end. Nature 505:35-6
Reiling, Erwin; Dollé, Martijn E T; Youssef, Sameh A et al. (2014) The progeroid phenotype of Ku80 deficiency is dominant over DNA-PKCS deficiency. PLoS One 9:e93568

Showing the most recent 10 out of 155 publications