Frontotemporal lobar degeneration (FTLD) is the second most common cause of dementia after Alzheimer's disease (AD) in patients <65 years of age. Tau and TDP-43 pathology variants of FTLD (FTLD-Tau and FTLD-TDP, respectively) account for -90 of FTLD cases, but TDP-43 pathology occurs in >50% of patients with AD, Parkinson's disease (PD), dementia with Lewy bodies (DLB), and Guam amyotrophic lateral sclerosis (ALS)/Parkinson Dementia Complex (ALS/PDC). Despite the fact that this neuropathology overlap is well known, it is unclear how comorbid Ap, tau and alpha-synuclein pathology modify TDP-43 mediated neurodegeneration in patients with frontotemporal dementia (FTD). Conversely, it is unknown how TDP-43 modifies Ap, tau and alpha-synuclein pathologies, but TDP-43 pathology is known to independently contribute to behavioral impairments in AD. Since these issues are tractable to investigate experimentally in transgenic (Tg) mouse models of TDP-43, tau, Ap and alpha-synuclein pathology. Project 4 tests the hypothesis that comorbid tau, Ap and alpha-synuclein pathologies in Tg mice independently modify TDP-43 mediated neurodegeneration and wee versa. This will be done by studying TDP-43 Tg mice which recapitulate the hallmark features of FTLD-TDP that we cross with our previously characterized mutant P301S tau Tg mice which show tau mediated neurodegeneration, behavioral impairments and premature death, Tg2576 Tg mice that model AD-like Ap pathology and our extensively studied M83 alpha-synuclien Tg mice that develop Lewy body pathology, motor impairments and lethal neurodegeneration. Implementing these Aims will elucidate how TDP-43 mediated neurodegenerative disease is modified by comorbid tau, Ap and alpha-synuclien pathologies and vice versa. These studies are highly significant because they will clarify mechanisms of TDP-43 proteinopathy and they have translational potential to improve both the diagnosis and the treatment of patients with TDP-43 proteinopathy.

Public Health Relevance

Project 4 tests the hypothesis that frontotemporal dementia (FTD) patients with co-incident Alzheimer's disease (AD) pathology (tau tangles, Ap plaques), or Parkinson's disease (PD) pathology (alpha-synuclein Lewy bodies) may have a different disease course and responses to therapies than those without these comorbid pathologies and vice versa. Although tau, Ap and alphasynuclein lesions often co-occur with TDP-43 pathologies in the same patient, these issues are difficult to address in patients but they are readily addressed in studies of transgenic (Tg) mouse models of TDP-43 mediated neurodegeneration that are/are not crossed with Tg mouse models of AD or PD pathologies. Thus, the relevance of Project 4 to human health is that it will elucidate how TDP-43 mediated neurodegeneration is modified by comorbid tau, Ap and alpha-synuclien pathologies and vice versa. These studies are highly significant because they will clarify mechanisms of TDP-43 proteinopathy and have translational potential to improve the diagnosis and treatment of patients with FTD, AD, PD and related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG017586-11
Application #
8048420
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (01))
Project Start
Project End
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
11
Fiscal Year
2011
Total Cost
$301,758
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Sanchez-Contreras, Monica Y; Kouri, Naomi; Cook, Casey N et al. (2018) Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci. Mol Neurodegener 13:37
Robinson, John L; Corrada, Maria M; Kovacs, Gabor G et al. (2018) Non-Alzheimer's contributions to dementia and cognitive resilience in The 90+ Study. Acta Neuropathol :
Brettschneider, Johannes; Suh, EunRan; Robinson, John L et al. (2018) Converging Patterns of ?-Synuclein Pathology in Multiple System Atrophy. J Neuropathol Exp Neurol 77:1005-1016
Suh, EunRan; Grando, Kaitlyn; Van Deerlin, Vivianna M (2018) Validation of a Long-Read PCR Assay for Sensitive Detection and Sizing of C9orf72 Hexanucleotide Repeat Expansions. J Mol Diagn 20:871-882
Zee, Jarcy; Xie, Sharon X (2018) The Kaplan-Meier Method for Estimating and Comparing Proportions in a Randomized Controlled Trial with Dropouts. Biostat Epidemiol 2:23-33
Oukoloff, Killian; Kovalevich, Jane; Cornec, Anne-Sophie et al. (2018) Design, synthesis and evaluation of photoactivatable derivatives of microtubule (MT)-active [1,2,4]triazolo[1,5-a]pyrimidines. Bioorg Med Chem Lett 28:2180-2183
Phillips, Jeffrey S; Das, Sandhitsu R; McMillan, Corey T et al. (2018) Tau PET imaging predicts cognition in atypical variants of Alzheimer's disease. Hum Brain Mapp 39:691-708
Smith, Kara M; Ash, Sharon; Xie, Sharon X et al. (2018) Evaluation of Linguistic Markers of Word-Finding Difficulty and Cognition in Parkinson's Disease. J Speech Lang Hear Res 61:1691-1699
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Gangishetti, Umesh; Christina Howell, J; Perrin, Richard J et al. (2018) Non-beta-amyloid/tau cerebrospinal fluid markers inform staging and progression in Alzheimer's disease. Alzheimers Res Ther 10:98

Showing the most recent 10 out of 593 publications