Frontotemporal dementia (FTD) or frontotemporal lobar degeneration (FTLD) is a group of heterogeneous sporadic and familial neurodegenerative disorders. They are the second most common cause of dementia after Alzheimer's disease (AD) in patients <65 and ~50% of FTLD patients develop abundant tau pathologies in neurons and glia (FTLD-Tau). Exciting new data from Project 2 and provocative recent reports provide models to test novel hypothesis concerning mechanisms of tauopathies. The first hypothesis we test is based on our recent observations that introduction of small amounts of exogenous tau fibril """"""""seeds"""""""" into tau overexpressing cells recruits endogenous tau to fibrillize into abundant tau filamentous structures seeded by the exogenously introduced tau fibrils. These results suggest a """"""""seeding"""""""" mechanism of tau tangle pathogenesis whereby fibrillar tau """"""""seeds"""""""" serve as a """"""""nidus"""""""" for recruiting soluble tau into fibrillar aggregates that enlarge as a result. The second hypothesis we test is based on recent data that tau fibrils spread from cell-to-cell in vitro and in tau transgenic (Tg) mouse models consistent with the notion of a prion-like mechanism for the propagation and spreading of tau pathology and disease progression. Successful completion of the studies to test these hypotheses here will address fundamental disease mechanisms of FTLD-Tau, which, in conjunction with research advances from other projects in this PPG will accelerate efforts to find better therapeutic interventions for patients with diverse FTLDs.

Public Health Relevance

Project 2 will provide in depth understanding on the fundamental disease mechanisms for tauopathies in general and FTLD-Tau in particular. This knowledge, together with the model systems developed in Project 2 will accelerate efforts to develop more effective therapies for the treatment of patients with FTLD-Tau and other tauopathies such as AD.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Berson, Amit; Sartoris, Ashley; Nativio, Raffaella et al. (2017) TDP-43 Promotes Neurodegeneration by Impairing Chromatin Remodeling. Curr Biol 27:3579-3590.e6
Spinelli, Edoardo G; Mandelli, Maria Luisa; Miller, Zachary A et al. (2017) Typical and atypical pathology in primary progressive aphasia variants. Ann Neurol 81:430-443
Cousins, Katheryn A Q; Ash, Sharon; Irwin, David J et al. (2017) Dissociable substrates underlie the production of abstract and concrete nouns. Brain Lang 165:45-54
Nevler, Naomi; Ash, Sharon; Jester, Charles et al. (2017) Automatic measurement of prosody in behavioral variant FTD. Neurology 89:650-656
Phillips, Jeffrey S; Da Re, Fulvio; Dratch, Laynie et al. (2017) Neocortical origin and progression of gray matter atrophy in nonamnestic Alzheimer's disease. Neurobiol Aging 63:75-87
Zylstra, Bradley; Netscher, George; Jacquemot, Julien et al. (2017) Extended, continuous measures of functional status in community dwelling persons with Alzheimer's and related dementia: Infrastructure, performance, tradeoffs, preliminary data, and promise. J Neurosci Methods :
Lee, Edward B; Porta, Sílvia; Michael Baer, G et al. (2017) Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol 134:65-78
Dong, Aoyan; Toledo, Jon B; Honnorat, Nicolas et al. (2017) Heterogeneity of neuroanatomical patterns in prodromal Alzheimer's disease: links to cognition, progression and biomarkers. Brain 140:735-747
Kim, Benjamin J; Irwin, David J; Song, Delu et al. (2017) Optical coherence tomography identifies outer retina thinning in frontotemporal degeneration. Neurology 89:1604-1611
Ballatore, Carlo; Brunden, Kurt R; Trojanowski, John Q et al. (2017) Non-Naturally Occurring Small Molecule Microtubule-Stabilizing Agents: A Potential Tactic for CNS-Directed Therapies. ACS Chem Neurosci 8:5-7

Showing the most recent 10 out of 549 publications