The overall purpose of Clinical Core B is to recruit and characterize patients with frontotemporal lobar degeneration (FTLD) to support the Cores and Projects of this Program Project Grant (PPG). Clinical Core B will obtain multimodal data during life that will be analyzed with Biostatistics Core E. We will develop a comprehensive diagnostic picture of clinical FTLD that corresponds to FTLD spectrum pathology, together with Pathology Core D. Genetic studies suggest that up to 40% of patients have a strong family history of FTLD Spectrum disease, and specific genetic mutations identified in 15% of FTLD patients lead to particular patterns of pathology. With Genetics Core C, we will recruit and study patients with familial FTLD. One major clinical phenotype is Primary Progressive Aphasia (PPA). This includes a subgroup with effortful speech known as progressive non-fluent aphasia (PNFA), a subgroup with degraded word and object meaning known as semantic dementia (SD), and logopenic progressive aphasia (LPA) that presents with impaired word-finding and repetition. The second major clinical phenotype is behavioral-variant FTD (bvFTD). This presents as a disorder of social comportment, personality and executive functioning, including apathy, disinhibition and obsessive rigidity. The spectrum of pathology most commonly causing FTLD includes FTLD-Tau and forms of FTLD related to ubiquitin pathology such as FTLD-TDP. However, about 30% of cases with a clinical diagnosis of FTLD have atypical presentations of Alzheimer's disease (AD) at autopsy. Because of these diagnostic ambiguities. Core B will collect extensive biomarker data to improve diagnostic accuracy.
Aim 1 will recruit patients with FTLD for clinical and autopsy studies for the Cores and Projects of this PPG, characterize these patients clinically, and follow them longitudinally, in collaboration with Core E.
Aim 2 will collect structural MRI, diffusion tensor imaging (DTI), arterial spin labeling (ASL), cerebrospinal fluid (CSF), blood, and plasma in FTLD.
Aim 3 will recruit patients and families at high risk for familial FTLD, together with Core C, and assess affected as well as clinically asymptomatic family members. We will advise Core C and Project 1 about clinical features of patients with genetic mutations, and collect novel biomarkers with Core C.
Aim 4 will support comparative studies of FTLD with other neurodegenerative conditions such as AD, amyotrophic lateral sclerosis (ALS), and synucleinopathies such as dementia with Lewy bodies (DLB) and other movement disorders. We will also continue to collaborate with investigators at other institutions on multi-center studies of FTLD. This work will support the other Projects and Cores of this PPG and advance our knowledge of FTLD from a multidimensional perspective.

Public Health Relevance

Frontotemporal lobar degeneration is as common as Alzheimer's disease in the segment of the population that is under 65 years of age. Taken together with other tauopathies such as corticobasal degeneration and progressive supranuclear palsy, this represents an important segment of the population that must be identified for treatment Clinical Core B, working together with the other Cores and Projects of this PPG, will contribute directly to this effort through the development of multimodal diagnostic strategies. These efforts will improve the care of patients as well as advance our scientific understanding of this disease.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Russ, Jenny; Liu, Elaine Y; Wu, Kathryn et al. (2015) Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol 129:39-52
Massimo, Lauren; Evans, Lois K (2014) Differentiating subtypes of apathy to improve person-centered care in frontotemporal degeneration. J Gerontol Nurs 40:58-65
Ferrari, Raffaele; Hernandez, Dena G; Nalls, Michael A et al. (2014) Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol 13:686-99
Olm, Christopher A; McMillan, Corey T; Spotorno, Nicola et al. (2014) The relative contributions of frontal and parietal cortex for generalized quantifier comprehension. Front Hum Neurosci 8:610
Serrano, Geidy E; Sabbagh, Marwan N; Sue, Lucia I et al. (2014) Positive florbetapir PET amyloid imaging in a subject with frequent cortical neuritic plaques and frontotemporal lobar degeneration with TDP43-positive inclusions. J Alzheimers Dis 42:813-21
Irwin, David J; McMillan, Corey T; Suh, EunRan et al. (2014) Myelin oligodendrocyte basic protein and prognosis in behavioral-variant frontotemporal dementia. Neurology 83:502-9
Alfieri, Julio A; Pino, Natalia S; Igaz, Lionel M (2014) Reversible behavioral phenotypes in a conditional mouse model of TDP-43 proteinopathies. J Neurosci 34:15244-59
Walker, Adam K; Daniels, Christine M LaPash; Goldman, James E et al. (2014) Astrocytic TDP-43 pathology in Alexander disease. J Neurosci 34:6448-58
McCluskey, Leo F; Geser, Felix; Elman, Lauren B et al. (2014) Atypical Alzheimer's disease in an elderly United States resident with amyotrophic lateral sclerosis and pathological tau in spinal motor neurons. Amyotroph Lateral Scler Frontotemporal Degener 15:466-72
Bit-Ivan, Esther N; Suh, Eunran; Shim, Hyung-Sub et al. (2014) A novel GRN mutation (GRN c.708+6_+9delTGAG) in frontotemporal lobar degeneration with TDP-43-positive inclusions: clinicopathologic report of 6 cases. J Neuropathol Exp Neurol 73:467-73

Showing the most recent 10 out of 333 publications