Frontotemporal lobar degeneration (FTLD) is the second most common cause of dementia after Alzheimer's disease (AD) in patients <65 years of age. Tau and TDP-43 pathology variants of FTLD (FTLD-Tau and FTLD-TDP, respectively) account for -90 of FTLD cases, but TDP-43 pathology occurs in >50% of patients with AD, Parkinson's disease (PD), dementia with Lewy bodies (DLB), and Guam amyotrophic lateral sclerosis (ALS)/Parkinson Dementia Complex (ALS/PDC). Despite the fact that this neuropathology overlap is well known, it is unclear how comorbid Ap, tau and alpha-synuclein pathology modify TDP-43 mediated neurodegeneration in patients with frontotemporal dementia (FTD). Conversely, it is unknown how TDP-43 modifies Ap, tau and alpha-synuclein pathologies, but TDP-43 pathology is known to independently contribute to behavioral impairments in AD. Since these issues are tractable to investigate experimentally in transgenic (Tg) mouse models of TDP-43, tau, Ap and alpha-synuclein pathology. Project 4 tests the hypothesis that comorbid tau, Ap and alpha-synuclein pathologies in Tg mice independently modify TDP-43 mediated neurodegeneration and wee versa. This will be done by studying TDP-43 Tg mice which recapitulate the hallmark features of FTLD-TDP that we cross with our previously characterized mutant P301S tau Tg mice which show tau mediated neurodegeneration, behavioral impairments and premature death, Tg2576 Tg mice that model AD-like Ap pathology and our extensively studied M83 alpha-synuclien Tg mice that develop Lewy body pathology, motor impairments and lethal neurodegeneration. Implementing these Aims will elucidate how TDP-43 mediated neurodegenerative disease is modified by comorbid tau, Ap and alpha-synuclien pathologies and vice versa. These studies are highly significant because they will clarify mechanisms of TDP-43 proteinopathy and they have translational potential to improve both the diagnosis and the treatment of patients with TDP-43 proteinopathy.

Public Health Relevance

Project 4 tests the hypothesis that frontotemporal dementia (FTD) patients with co-incident Alzheimer's disease (AD) pathology (tau tangles, Ap plaques), or Parkinson's disease (PD) pathology (alpha-synuclein Lewy bodies) may have a different disease course and responses to therapies than those without these comorbid pathologies and vice versa. Although tau, Ap and alphasynuclein lesions often co-occur with TDP-43 pathologies in the same patient, these issues are difficult to address in patients but they are readily addressed in studies of transgenic (Tg) mouse models of TDP-43 mediated neurodegeneration that are/are not crossed with Tg mouse models of AD or PD pathologies. Thus, the relevance of Project 4 to human health is that it will elucidate how TDP-43 mediated neurodegeneration is modified by comorbid tau, Ap and alpha-synuclien pathologies and vice versa. These studies are highly significant because they will clarify mechanisms of TDP-43 proteinopathy and have translational potential to improve the diagnosis and treatment of patients with FTD, AD, PD and related disorders.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Russ, Jenny; Liu, Elaine Y; Wu, Kathryn et al. (2015) Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol 129:39-52
Massimo, Lauren; Evans, Lois K (2014) Differentiating subtypes of apathy to improve person-centered care in frontotemporal degeneration. J Gerontol Nurs 40:58-65
Ferrari, Raffaele; Hernandez, Dena G; Nalls, Michael A et al. (2014) Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol 13:686-99
Olm, Christopher A; McMillan, Corey T; Spotorno, Nicola et al. (2014) The relative contributions of frontal and parietal cortex for generalized quantifier comprehension. Front Hum Neurosci 8:610
Serrano, Geidy E; Sabbagh, Marwan N; Sue, Lucia I et al. (2014) Positive florbetapir PET amyloid imaging in a subject with frequent cortical neuritic plaques and frontotemporal lobar degeneration with TDP43-positive inclusions. J Alzheimers Dis 42:813-21
Irwin, David J; McMillan, Corey T; Suh, EunRan et al. (2014) Myelin oligodendrocyte basic protein and prognosis in behavioral-variant frontotemporal dementia. Neurology 83:502-9
Alfieri, Julio A; Pino, Natalia S; Igaz, Lionel M (2014) Reversible behavioral phenotypes in a conditional mouse model of TDP-43 proteinopathies. J Neurosci 34:15244-59
Walker, Adam K; Daniels, Christine M LaPash; Goldman, James E et al. (2014) Astrocytic TDP-43 pathology in Alexander disease. J Neurosci 34:6448-58
McCluskey, Leo F; Geser, Felix; Elman, Lauren B et al. (2014) Atypical Alzheimer's disease in an elderly United States resident with amyotrophic lateral sclerosis and pathological tau in spinal motor neurons. Amyotroph Lateral Scler Frontotemporal Degener 15:466-72
Bit-Ivan, Esther N; Suh, Eunran; Shim, Hyung-Sub et al. (2014) A novel GRN mutation (GRN c.708+6_+9delTGAG) in frontotemporal lobar degeneration with TDP-43-positive inclusions: clinicopathologic report of 6 cases. J Neuropathol Exp Neurol 73:467-73

Showing the most recent 10 out of 333 publications