Recent major discoveries in the genetics of frontotemporal lobar degeneration (FTLD) have accelerated the understanding of the pathogenetic mechanisms underlying FTLD and related disorders. These include the discovery of mutations in progranulin (GRN) as an important cause of FTLD and the finding of TAR DNA binding protein 43 (TDP43/TARDBP) as a major component of the intraneuronal inclusions in FTLD. Over the past years, the Genetics Core has 1) screened a significant number of PPG patients for mutations in known genes causing dementia (including MAPT), identifying known and novel mutations and a novel risk factor for neurodegeneration;2) characterized the genotype for most of the known risk factors for dementia, including APOE and MAPT haplotypes;and 3) started a productive collaboration with the laboratory of Rosa Rademakers at Mayo Clinic Jacksonville, a leading group in the study of FTD genetics. We will continue to collect DNA and RNA from peripheral blood from patients and controls with FTD-spectrum disorders evaluated through the PPG, and to screen select cases for mutation in all the dementia-causing genes. Indepth analysis of peripheral progranulin level will be performed in collaboration with the Rademakers lab.Cell lines will be created and stored in the NIH-funded AD National Cell Repository. We will also assess a panel of common polymorphisms in several genes that have been reported to modulate the dementia risk, memory performance, or social behavior, RNA from peripheral blood will be collected and used for gene expression studies. Finally, we propose to identify new loci associated with FTD and AD using novel mapping methods. These genetic data will be integrated with clinical, pathological and imaging data to achieve the core aims of the PPG projects, which are advancing our understanding of the diagnosis, characterization, and genetic architecture of neurodegenerative dementia and, in conjunction with the other sections of the current Program Project, building an extremely well characterized series of patients with neurodegenerative dementia and controls, a potentially invaluable resource for the field.

Public Health Relevance

This core will accelerate research into the genetics of FTLD by identifying known and novel mutations in patients with dementia, characterizing in depth progranulin mutation carriers, and possibly identifying novel causative genes and risk factors. Extensively phenotyped and followed longitudinally, the PPG patient cohort is one of the best characterized dementia patient series in the world, and storing DNA samples in a central repository will provide an invaluable resource for the field.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG019724-11
Application #
8287307
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (02))
Project Start
2012-09-01
Project End
2017-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
11
Fiscal Year
2012
Total Cost
$191,600
Indirect Cost
$28,292
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Geier, Ethan G; Bourdenx, Mathieu; Storm, Nadia J et al. (2018) Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia. Acta Neuropathol :
Sturm, Virginia E; Brown, Jesse A; Hua, Alice Y et al. (2018) Network Architecture Underlying Basal Autonomic Outflow: Evidence from Frontotemporal Dementia. J Neurosci 38:8943-8955
Karch, Celeste M; Wen, Natalie; Fan, Chun C et al. (2018) Selective Genetic Overlap Between Amyotrophic Lateral Sclerosis and Diseases of the Frontotemporal Dementia Spectrum. JAMA Neurol 75:860-875
Staffaroni, Adam M; Brown, Jesse A; Casaletto, Kaitlin B et al. (2018) The Longitudinal Trajectory of Default Mode Network Connectivity in Healthy Older Adults Varies As a Function of Age and Is Associated with Changes in Episodic Memory and Processing Speed. J Neurosci 38:2809-2817
Seo, Sang Won; Thibodeau, Marie-Pierre; Perry, David C et al. (2018) Early vs late age at onset frontotemporal dementia and frontotemporal lobar degeneration. Neurology 90:e1047-e1056
Santos-Santos, Miguel A; Rabinovici, Gil D; Iaccarino, Leonardo et al. (2018) Rates of Amyloid Imaging Positivity in Patients With Primary Progressive Aphasia. JAMA Neurol 75:342-352
Bergeron, David; Gorno-Tempini, Maria L; Rabinovici, Gil D et al. (2018) Prevalence of amyloid-? pathology in distinct variants of primary progressive aphasia. Ann Neurol 84:729-740
Björkhem, Ingemar; Patra, Kalicharan; Boxer, Adam L et al. (2018) 24S-Hydroxycholesterol Correlates With Tau and Is Increased in Cerebrospinal Fluid in Parkinson's Disease and Corticobasal Syndrome. Front Neurol 9:756
Pottier, Cyril; Zhou, Xiaolai; Perkerson 3rd, Ralph B et al. (2018) Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol 17:548-558
Theofilas, Panos; Ehrenberg, Alexander J; Nguy, Austin et al. (2018) Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimer's disease Braak stages: a quantitative study in humans. Neurobiol Aging 61:1-12

Showing the most recent 10 out of 607 publications