The Clinical and Administrative Core provides essential operational functions for the entire PPG. This Core will recruit patients with frontotemporal dementia (FTD), semantic dementia (SD), progressive non-fluent aphasia (PNFA), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and normal control subjects. Each subject will receive a comprehensive evaluation measuring a broad range of neurological, neuropsychological, functional, neurobehavioral, and social-personality variables. In addition, subjects will be followed annually to collect longitudinal data and maintain high enrollment in our autopsy program. Administrative functions of this Core include the infrastructure for establishing policies and procedures, maintaining communication within the PPG and between the PPG and the scientific community, ensuring optimal utilization and monitoring of PPG resources, and ensuring the scientific and ethical integrity of all PPG practices. Once recruited into the Clinical and Administrative Core, subjects will be referred to Core E (Dr. Rosen) for imaging and Projects 2 (Imaging;Dr. Weiner), 3 (Emotion;Dr. Levenson), 4 (Clinical Diagnosis;Dr. Miller), and 6 (Network Biomarkers;Dr. Seeley). In addition, blood samples will be sent to the Genetics Core (Dr. Geschwind) and autopsy tissue will be sent to the Pathology Core (Drs. Seeley &Trojanowski).

Public Health Relevance

Core A will benefit the public health by advancing the understanding of frontotemporal dementia and identify the best diagnostic tools and potentially uncover treatment targets. If successful, this work could accelerate the search for new therapies for prevalent age-related neurodegnerative diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG019724-13
Application #
8730063
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
13
Fiscal Year
2014
Total Cost
$559,896
Indirect Cost
$203,466
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Barton, Cynthia; Ketelle, Robin; Merrilees, Jennifer et al. (2016) Non-pharmacological Management of Behavioral Symptoms in Frontotemporal and Other Dementias. Curr Neurol Neurosci Rep 16:14
Naasan, Georges; Rabinovici, Gil D; Ghosh, Pia et al. (2016) Amyloid in dementia associated with familial FTLD: not an innocent bystander. Neurocase 22:76-83
Yokoyama, Jennifer S; Marx, Gabe; Brown, Jesse A et al. (2016) Systemic klotho is associated with KLOTHO variation and predicts intrinsic cortical connectivity in healthy human aging. Brain Imaging Behav :
Ranasinghe, Kamalini G; Rankin, Katherine P; Pressman, Peter S et al. (2016) Distinct Subtypes of Behavioral Variant Frontotemporal Dementia Based on Patterns of Network Degeneration. JAMA Neurol 73:1078-88
Schott, Jonathan M; Crutch, Sebastian J; Carrasquillo, Minerva M et al. (2016) Genetic risk factors for the posterior cortical atrophy variant of Alzheimer's disease. Alzheimers Dement 12:862-71
Vatsavayai, Sarat C; Yoon, Soo Jin; Gardner, Raquel C et al. (2016) Timing and significance of pathological features in C9orf72 expansion-associated frontotemporal dementia. Brain 139:3202-3216
Mair, Waltraud; Muntel, Jan; Tepper, Katharina et al. (2016) FLEXITau: Quantifying Post-translational Modifications of Tau Protein in Vitro and in Human Disease. Anal Chem 88:3704-14
Chételat, Gaël; Ossenkoppele, Rik; Villemagne, Victor L et al. (2016) Atrophy, hypometabolism and clinical trajectories in patients with amyloid-negative Alzheimer's disease. Brain 139:2528-39
Nascimento, Camila; Suemoto, Claudia K; Rodriguez, Roberta D et al. (2016) Higher Prevalence of TDP-43 Proteinopathy in Cognitively Normal Asians: A Clinicopathological Study on a Multiethnic Sample. Brain Pathol 26:177-85
Silva, M Catarina; Cheng, Chialin; Mair, Waltraud et al. (2016) Human iPSC-Derived Neuronal Model of Tau-A152T Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability. Stem Cell Reports 7:325-40

Showing the most recent 10 out of 497 publications