instmctions): The capacity of the immune system to mediate responses to new infections declines with age. This decline poses substantial problems from a clinical standpoint since the efficacy of vaccines administered to the elderly is severely compromised. For example, influenza vaccines mediate only limited protection in the elderly, a population that is particularly vulnerable to respiratory virus infections, such as influenza. Many of the immune defects that accumulate with age have been mapped to CD4* T cells. CD4* T cells from aged individuals are more difficult to prime, proliferate poorly to antigen challenge, are less efficient at generating T cell memory, and are less effective at helping antibody responses to new infections or vaccines. In contrast, much less is known about the impact of age on the memory CDS* T cell pool. We and others have shown that memory CDS* T cells generated in aged mice has a reduced capacity to mediate recall responses. In addition, we have shown that memory CDS* T cell pools progressively degrade with increasing age. This includes the development of antigen-specific T cell clonal expansions (TCE) that lack the capacity to mediate recall responses and other changes in the composition and quality of memory CDS* T cell pools. The mechanisms underlying the poor quality of CDS* T cell memory in aged mice and the factors that control the age-related degradation of CDS* T cell memory are not understood. We hypothesize that the loss of cellular recall responses to respiratory virus infections in aged animals reflects the presence of distinct subpopulations of memory CDS* T cells that differ in their longevity and responsiveness. To address this hypothesis, we will determine how and when the memory T cell pool degrades with increasing age and the mechanisms that control the development of different memory T cell subsets.
The specific Aims are to (i) identify the mechanisms that control the development of defective memory generation in aged mice and (ii) determine when and how dysregulation of the memory T cell pool impacts recall responses to respiratory virus infections. These studies will integrate with other Projects in the Program that address the impact of aging on the quality of cellular and humoral memory generated in aged mice.

Public Health Relevance

Respiratory virus infections, such as those mediated by influenza, constitute a major human health problem in the United States. Thus, there is an urgent need to understand immunity to these viruses, especially in the elderly. The goal of the current studies is to better understand immunity in the aged with a view to the development of more effective vaccines for this population.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-1 (02))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Trudeau Institute, Inc.
Saranac Lake
United States
Zip Code
Zhang, Wenliang; Brahmakshatriya, Vinayak; Swain, Susan L (2014) CD4 T cell defects in the aged: causes, consequences and strategies to circumvent. Exp Gerontol 54:67-70
McKinstry, K Kai; Dutton, Richard W; Swain, Susan L et al. (2013) Memory CD4 T cell-mediated immunity against influenza A virus: more than a little helpful. Arch Immunol Ther Exp (Warsz) 61:341-53
Lefebvre, Julie S; Haynes, Laura (2013) Vaccine strategies to enhance immune responses in the aged. Curr Opin Immunol 25:523-8
Haynes, Laura; Swain, Susan L (2012) Aged-related shifts in T cell homeostasis lead to intrinsic T cell defects. Semin Immunol :
Blackman, Marcia A; Woodland, David L (2011) The narrowing of the CD8 T cell repertoire in old age. Curr Opin Immunol 23:537-42
Jones, Stephen C; Brahmakshatriya, Vinayak; Huston, Gail et al. (2010) TLR-activated dendritic cells enhance the response of aged naive CD4 T cells via an IL-6-dependent mechanism. J Immunol 185:6783-94
Kohlmeier, Jacob E; Connor, Lisa M; Roberts, Alan D et al. (2010) Nonmalignant clonal expansions of memory CD8+ T cells that arise with age vary in their capacity to mount recall responses to infection. J Immunol 185:3456-62
Takamura, Shiki; Roberts, Alan D; Jelley-Gibbs, Dawn M et al. (2010) The route of priming influences the ability of respiratory virus-specific memory CD8+ T cells to be activated by residual antigen. J Exp Med 207:1153-60
Tsukamoto, Hirotake; Huston, Gail E; Dibble, John et al. (2010) Bim dictates naive CD4 T cell lifespan and the development of age-associated functional defects. J Immunol 185:4535-44
Maue, Alexander C; Eaton, Sheri M; Lanthier, Paula A et al. (2009) Proinflammatory adjuvants enhance the cognate helper activity of aged CD4 T cells. J Immunol 182:6129-35

Showing the most recent 10 out of 27 publications