The purpose of the Electrophysiology Core is to conduct long-term potentiation recording experiments for all projects of this program. Long-term potentiation (LTP), an enhancement of synaptic transmission following high frequency stimulation, is believed to be the cellular basis of learning and memory. The mechanism of LTP has been studied widely in the hippocampal CA1 area, and many studies have demonstrated that efficacy of LTP consistently correlates with assessments of learning and memory/ cognitive function. Thus, the Electrophysiology Core will conduct LTP experiments to provide a functional assessment of cognitive function, and how it may be influenced with conditions and interventions tested in the projects. The Electrophysiology Core has the following Specific Aims: 1): Conduct hippocampal CA1 long-term potentiation recording experiments for projects 1, 2, 3 and 4. The Electrophysiology Core laboratory has established hippocampal CA1 LTP recording in mice, including those up to 24 months of age (Projects, 1, 3 and 4) and rats (Project 2). The Core will conduct all LTP experiments, analyze all data (in conjunction with the biostatistical component of the Administration Core), and provide results to the relevant Project Director. The Electrophysiology Core Director and Core personnel conducting LTP studies will be blinded to the treatment to which individual animals will have been exposed. 2): Provide an organizational structure for Project Directors to ensure a timely and cost-effective completion of required long-term potentiation studies. The Core Director will oversee overall operations of the Electrophysiology Core. As the Core will be conducting studies for four projects on various age groups of animals, the Core Director will work with Project Directors and Director of the Animal Resources and Behavioral Assessment Core (Core B) to coordinate electrophysiology studies with timings of other endpoints for each Project. The experiments to be conducted by the Electrophysiology Core will assist the Projects of this program in their attempt to discover the adverse changes that occur in the brain with aging, neurological diseases such as Alzheimer's Disease, and injuries such as stroke. Understanding these adverse changes should help us to discover new therapeutics and interventions to treat these conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
7P01AG022550-10
Application #
8431386
Study Section
Special Emphasis Panel (ZAG1-ZIJ-8)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
10
Fiscal Year
2013
Total Cost
$150,775
Indirect Cost
$48,899
Name
West Virginia University
Department
Type
DUNS #
191510239
City
Morgantown
State
WV
Country
United States
Zip Code
26506
Sun, Jiahong; Ren, Xuefang; Qi, Wen et al. (2016) Geissoschizine methyl ether protects oxidative stress-mediated cytotoxicity in neurons through the 'Neuronal Warburg Effect'. J Ethnopharmacol 187:249-58
Engler-Chiurazzi, E B; Singh, M; Simpkins, J W (2016) From the 90's to now: A brief historical perspective on more than two decades of estrogen neuroprotection. Brain Res 1633:96-100
Engler-Chiurazzi, E B; Brown, C M; Povroznik, J M et al. (2016) Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol :
Engler-Chiurazzi, Elizabeth B; Covey, Douglas F; Simpkins, James W (2016) A novel mechanism of non-feminizing estrogens in neuroprotection. Exp Gerontol :
Sarkar, S; Jun, S; Rellick, S et al. (2016) Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res 1646:139-51
Richter, Frank; Koulen, Peter; Kaja, Simon (2016) N-Palmitoylethanolamine Prevents the Run-down of Amplitudes in Cortical Spreading Depression Possibly Implicating Proinflammatory Cytokine Release. Sci Rep 6:23481
Engler-Chiurazzi, Elizabeth B; Stapleton, Phoebe A; Stalnaker, Jessica J et al. (2016) Impacts of prenatal nanomaterial exposure on male adult Sprague-Dawley rat behavior and cognition. J Toxicol Environ Health A 79:447-52
Sun, Fen; Nguyen, Trinh; Jin, Xin et al. (2016) Pgrmc1/BDNF Signaling Plays a Critical Role in Mediating Glia-Neuron Cross Talk. Endocrinology 157:2067-79
Sun, Jiahong; Hu, Heng; Ren, Xuefang et al. (2016) Tert-butylhydroquinone compromises survival in murine experimental stroke. Neurotoxicol Teratol 54:15-21
Shetty, Ritu A; Rutledge, Margaret A; Forster, Michael J (2016) Retrograde conditioning of place preference and motor activity with cocaine in mice. Psychopharmacology (Berl) :

Showing the most recent 10 out of 162 publications