In the preceding period, the program project has shown that deficiency in She proteins strongly alters metabolism, decreases adiposity and increases survival on a high-fat diet, and increases stress resistance and median longevity on a calorie-restricted (CR) diet. The metabolic shift in She-deficient mice strongly resembles that observed in CR animals, and consistently. She expression is decreased in fasting animals. Thus, She-deficiency appears to be a CR-mimetic. In both Shc-deflcient and CR mice there is increased capacity for fatty acid oxidation, ketogenesis, ketone body catabolism, gluconeogenesis, and amino acid catabolism, while capacity for glycolysis is decreased. She mutant mice have decreased She levels as a consequence of mutation, and CR also causes decreased levels of She proteins. She proteins may play an important role in transitioning from the fed to fasted state. In particular, the program will pursue the hypothesis that decreases in She proteins in tissues, such as skeletal muscle and liver, are needed for animals to properly adapt to dietary conditions which require a sustained increase in fatty acid oxidation (CR, low-carbohydrate diets, high-fat/high-carbohydrate diets, etc.), and it is under these conditions that the influence of Shc on lifespan is most noticeable. Thus, the aims of this project are focused on determining the influence of She proteins on the metabolic response to high-fat/high-carbohydrate diets, the role She based modifications play in the metabolic response to CR, and whether or not a diet (low-carbohydrate) that induces chronic increases in capacity for P-oxidation, ketone body metabolism and gluconeogenesis can mirror the effects of CR and decreased She levels. The three Specific Aims of this subproject are to (1) determine the mechanism for resistance to weight gain in p66Shc-/- mice on a high-fat/high-carbohydrate diet;(2) determine if low-carbohydrate the metabolic response to sustained CR is altered in p66Shc-/- mice;and (3) determine diets can mimic the metabolic changes observed in the p66Shc-/- mice and increase life span. The proposed studies will provide new information about the influence of She proteins on energy metabolism and life oxidation. span in animals consuming diets which require sustained increases in fatty acid oxidation.

Public Health Relevance

We live in a high-fat environment, and obesity and diabetes and their comorbidities are an epidemic in the U.S. The metabolic alterations caused by She deficiency combat adiposity and promote insulin sensitization even in the context of a high-fat diet. We will test a low-carbohydrate diet as a nutritional intervention to induce the 'healthy aging'metabolic features of She-deficiency. The outcome will likely have implications for developing healthy human diets.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-2)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
United States
Zip Code
Tosatto, Anna; Sommaggio, Roberta; Kummerow, Carsten et al. (2016) The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1α. EMBO Mol Med 8:569-85
Datta, Sandipan; Sahdeo, Sunil; Gray, Jennifer A et al. (2016) A high-throughput screen for mitochondrial function reveals known and novel mitochondrial toxicants in a library of environmental agents. Mitochondrion 31:79-83
Taylor, Sandra L; Ruhaak, L Renee; Kelly, Karen et al. (2016) Effects of imputation on correlation: implications for analysis of mass spectrometry data from multiple biological matrices. Brief Bioinform :
Tian, Jijing; Yang, Guoxiang; Chen, Huan-Yuan et al. (2016) Galectin-3 regulates inflammasome activation in cholestatic liver injury. FASEB J 30:4202-4213
Raffaello, Anna; Mammucari, Cristina; Gherardi, Gaia et al. (2016) Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends Biochem Sci 41:1035-1049
Tomilov, Alexey; Tomilova, Natalia; Shan, Yuxi et al. (2016) p46Shc Inhibits Thiolase and Lipid Oxidation in Mitochondria. J Biol Chem 291:12575-85
Datta, Sandipan; Tomilov, Alexey; Cortopassi, Gino (2016) Identification of small molecules that improve ATP synthesis defects conferred by Leber's hereditary optic neuropathy mutations. Mitochondrion 30:177-86
Shen, Yan; McMackin, Marissa Z; Shan, Yuxi et al. (2016) Frataxin Deficiency Promotes Excess Microglial DNA Damage and Inflammation that Is Rescued by PJ34. PLoS One 11:e0151026
Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H et al. (2016) Multivariate two-part statistics for analysis of correlated mass spectrometry data from multiple biological specimens. Bioinformatics :
Song, Lanying; Cortopassi, Gino (2015) Mitochondrial complex I defects increase ubiquitin in substantia nigra. Brain Res 1594:82-91

Showing the most recent 10 out of 88 publications