The Administrative Core provides administrative services to the three projects and two other cores of this program project. The program project proposal brings together the unique talents of several groups to perform an integrative and interdisciplinary analysis of the mechanism by which p66Shc-deficiency extends lifespan, across several levels of biological organization, and utilizing analyses of many different types that generate data in multiple formats. The Administrative Core is central to the synergistic interaction of the projects and cores, and in fact has demonstrated the facilitation of research transactions between these groups since the proposal's original submission. As a result of this synergistic interaction, the program has generated multiple new hypotheses for She function. Through this coordination over the last 4.5 years, the research conducted by the program project has demonstrated that Shcs control adiposity, metabolism, insulin signaling, and stress resistance, and the Administrative Core has facilitated the publication of >64 manuscripts from our laboratories.
The Specific Aims of this core are: to 1) provide an organizational structure to expedite and coordinate research and promote interactions among investigators; 2) monitor and regularly review the quality of research and prepare progress reports; 3) manage the fiscal components of the program project; 4) facilitate publications, presentations, and the dissemination of research results; 5) organize annual meetings by project members and an external review committee; and 6) coordinate and monitor data and resource sharing. Central to how these Aims will be achieved, Core A will organize and manage the monthly teleconference, the weekly lab meetings, the annual External Advisory Committee meeting, and the web-based server for data interchange between the seven units.

Public Health Relevance

Obesity and diabetes are consequences of the Western high-fat diet, and these consequences contribute massively to unhealthy aging. The Administrative Core will coordinate the scientific efforts of a multilaboratory study to identify the mechanism of anti-adiposity, insulin sensitization, stress resistance and improved longevity ilinder caloric restriction and high-fat diets in She knockout mice, and facilitate the discovery and distribution of nutritional and pharmacological interventions to improve human healthy aging.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG025532-10
Application #
9186981
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2016-12-01
Budget End
2017-11-30
Support Year
10
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
McMackin, Marissa Z; Henderson, Chelsea K; Cortopassi, Gino A (2017) Neurobehavioral deficits in the KIKO mouse model of Friedreich's ataxia. Behav Brain Res 316:183-188
Granatiero, Veronica; Gherardi, Gaia; Vianello, Matteo et al. (2017) Role of p66shc in skeletal muscle function. Sci Rep 7:6283
Song, Lanying; Yu, Alfred; Murray, Karl et al. (2017) Bipolar cell reduction precedes retinal ganglion neuron loss in a complex 1 knockout mouse model. Brain Res 1657:232-244
Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H et al. (2017) Multivariate two-part statistics for analysis of correlated mass spectrometry data from multiple biological specimens. Bioinformatics 33:17-25
Roberts, Megan N; Wallace, Marita A; Tomilov, Alexey A et al. (2017) A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice. Cell Metab 26:539-546.e5
Baldassini, W A; Ramsey, J J; Hagopian, K et al. (2017) The influence of Shc proteins and high-fat diet on energy metabolism of mice. Cell Biochem Funct 35:527-537
Taylor, Sandra L; Ruhaak, L Renee; Kelly, Karen et al. (2017) Effects of imputation on correlation: implications for analysis of mass spectrometry data from multiple biological matrices. Brief Bioinform 18:312-320
Datta, Sandipan; Baudouin, Christophe; Brignole-Baudouin, Francoise et al. (2017) The Eye Drop Preservative Benzalkonium Chloride Potently Induces Mitochondrial Dysfunction and Preferentially Affects LHON Mutant Cells. Invest Ophthalmol Vis Sci 58:2406-2412
Hagopian, Kevork; Kim, Kyoungmi; López-Dominguez, José Alberto et al. (2016) Mice with low levels of Shc proteins display reduced glycolytic and increased gluconeogenic activities in liver. Biochem Biophys Rep 7:273-286
Datta, Sandipan; Tomilov, Alexey; Cortopassi, Gino (2016) Identification of small molecules that improve ATP synthesis defects conferred by Leber's hereditary optic neuropathy mutations. Mitochondrion 30:177-86

Showing the most recent 10 out of 95 publications