Alzheimer's disease (AD) will become a public health crisis within the next 2-3 decades if left unchecked. There are no proven treatments that delay the onset or prevent the progression of AD, although several promising candidates are being developed. During the development of these therapies, it will be very important to have biomarkers that can identify individuals at high risk for AD in eariiest clinical stages in order to target them for clinical trials of disease-modifying therapies and to monitor therapy success. Clinicopathologic evidence suggests that AD pathology (particularly the buildup of amyloid plaques) begins 10-20 years before the onset of cognitive symptoms. The earliest clinical symptoms of AD are accompanied by, and likely due to, neuronal and synaptic dysfunction and/or cell death. Thus, it will be critical to identify individuals with "preclinical" and very early stage symptomatic AD, prior to marked clinical symptoms and neuron loss, so new therapies will have the greatest chance to preserve normal brain function. The Adult Children Study (ACS) Biomarker Core was initially funded as a competitive supplement to the ACS PPG in April 2008. The Core's mission is to facilitate and support antecedent AD biomarkers research by providing the necessary infrastructure for the collection, storage, and dissemination of fluid (CSF and plasma) samples (and associated data) for our own research at Washington University and that of the greater AD scientific community. Since inception of the Core, our productivity has roughly doubled (as defined by the number of CSF and plasma samples collected, the number of samples disseminated to investigators, and the number of papers using our samples that have been published in peer-reviewed journals). Thus, in the present renewal application, we propose to build upon our success and propose the following aims:
Aim 1 : Maintain and grow a repository of fasted CSF and plasma samples for present and future aging and AD biomarker studies.
Aim 2 : Coordinate the distribution of CSF and plasma samples to qualified investigators.
Aim 3 : Compare the values obtained for CSF Ap42, tau and ptauiei in Project 2 as a function of assay (Innotest vs. xMAP) and plasma Ap species (APi^o, APx-40, APi.42. APx^2) as a function of fasting state.

Public Health Relevance

There are currently no effective treatments that will prevent Alzheimer's disease, halt its progression or delay its onset, although several therapeutic approaches are being developed and tested in clinical trials. Parallel efforts are being channeled into developing biomarkers that would aid in disease diagnosis and prognosis and assessing disease risk. Together these combined endeavors have the potential to provide physicians the tools to effectively diagnose and treat the disease, preferably everi before the onset of cognitive decline.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG026276-09
Application #
8732591
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
9
Fiscal Year
2014
Total Cost
$300,890
Indirect Cost
$102,936
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Su, Yi; Blazey, Tyler M; Snyder, Abraham Z et al. (2015) Partial volume correction in quantitative amyloid imaging. Neuroimage 107:55-64
Yap, Melvin J; Sibley, Daragh E; Balota, David A et al. (2015) Responding to nonwords in the lexical decision task: Insights from the English Lexicon Project. J Exp Psychol Learn Mem Cogn 41:597-613
Aschenbrenner, Andrew J; Balota, David A; Tse, Chi-Shing et al. (2015) Alzheimer disease biomarkers, attentional control, and semantic memory retrieval: Synergistic and mediational effects of biomarkers on a sensitive cognitive measure in non-demented older adults. Neuropsychology 29:368-81
Harari, Oscar; Cruchaga, Carlos; Kauwe, John S K et al. (2014) Phosphorylated tau-A?42 ratio as a continuous trait for biomarker discovery for early-stage Alzheimer's disease in multiplex immunoassay panels of cerebrospinal fluid. Biol Psychiatry 75:723-31
Jin, Sheng Chih; Benitez, Bruno A; Karch, Celeste M et al. (2014) Coding variants in TREM2 increase risk for Alzheimer's disease. Hum Mol Genet 23:5838-46
Ringman, John M; Goate, Alison; Masters, Colin L et al. (2014) Genetic heterogeneity in Alzheimer disease and implications for treatment strategies. Curr Neurol Neurosci Rep 14:499
Thomas, Jewell B; Brier, Matthew R; Bateman, Randall J et al. (2014) Functional connectivity in autosomal dominant and late-onset Alzheimer disease. JAMA Neurol 71:1111-22
Benitez, Bruno A; Jin, Sheng Chih; Guerreiro, Rita et al. (2014) Missense variant in TREML2 protects against Alzheimer's disease. Neurobiol Aging 35:1510.e19-26
Fagan, Anne M; Xiong, Chengjie; Jasielec, Mateusz S et al. (2014) Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer's disease. Sci Transl Med 6:226ra30
Brier, Matthew R; Thomas, Jewell B; Fagan, Anne M et al. (2014) Functional connectivity and graph theory in preclinical Alzheimer's disease. Neurobiol Aging 35:757-68

Showing the most recent 10 out of 117 publications