The overall goal of this program project is to identify and characterize new and alternative mechanistic targets by which estrogens and progestins are neuroprotective. This program of research is driven by a critical need to improve our understanding of steroid hormone neurobiology, a need that became evident following the results of the Women's Health Initiative Memory Study that identified effects of estrogen and/or progestins that were contrary to expectation. To address this need, we have organized a program of research consisting of 4 highly interactive research projects and 2 supportive cores. The studies proposed in these projects challenge the field to consider a novel membrane PR (Project 1), a mitochondria-localized estrogen receptor (Project 2), intracellular Ca2+channels, including IPS receptors and a novel mitochondrial ryanodine receptor (Project 3), and a previously ignored, naturally occurring estrogen, 17a-E2 (Project 4), as critical players in neuroprotection and/or neurogenesis. Supporting these projects will be the Administrative Core (Core A) that not only oversees the program of research, but will also provide biostatistical support and a common animal model (ovariectomized animals that have undergone transient cerebral ischemia) to the projects, the latter serving as a point of integration for the research performed in the individual projects. In addition, the Mass Spectrometry Core (Core B) will serve all 4 projects by providing powerful tools to assess brain steroid levels and for the routine identification and/or quantification of proteins and their posttranslational modifications, which will serve to enhance the Program's ability to define relevant mechanistic targets of estrogens and progestins. Through the successful completion of the proposed research, we expect to have identified key players in the neuroprotection cascade relevant to the protective effects of estrogen and progesterone. In particular, we will have identified the most protective hormone along with their important intracellular targets that are critical for protecting neural tissue, which can in turn, be exploited for the development of safer and more effective therapeutic strategies for treating the menopause and age associated disorders such as Alzheimer's disease, whose incidence and risk increases in the postmenopausal period.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG027956-04
Application #
7879950
Study Section
Special Emphasis Panel (ZAG1-ZIJ-2 (J2))
Program Officer
Wise, Bradley C
Project Start
2007-08-15
Project End
2012-05-31
Budget Start
2010-06-01
Budget End
2012-05-31
Support Year
4
Fiscal Year
2010
Total Cost
$1,429,132
Indirect Cost
Name
University of North Texas
Department
Pharmacology
Type
Other Domestic Higher Education
DUNS #
110091808
City
Fort Worth
State
TX
Country
United States
Zip Code
76107
Nguyen, Trinh; Su, Chang; Singh, Meharvan (2018) Let-7i inhibition enhances progesterone-induced functional recovery in a mouse model of ischemia. Proc Natl Acad Sci U S A 115:E9668-E9677
Izurieta Munoz, Haydee; Gonzales, Eric B; Sumien, Nathalie (2018) Effects of creatine supplementation on nociception in young male and female mice. Pharmacol Rep 70:316-321
Montgomery, Christa L; Johnson, Heather M; Johnston, Thomas P et al. (2018) Mechanisms Underlying Early-Stage Changes in Visual Performance and Retina Function After Experimental Induction of Sustained Dyslipidemia. Neurochem Res 43:1500-1510
Grillo, Stephanie L; Montgomery, Christa L; Johnson, Heather M et al. (2018) Quantification of Changes in Visual Function During Disease Development in a Mouse Model of Pigmentary Glaucoma. J Glaucoma 27:828-841
Mock, J Thomas; Knight, Sherilynn G; Vann, Philip H et al. (2018) Gait Analyses in Mice: Effects of Age and Glutathione Deficiency. Aging Dis 9:634-646
Grillo, Michael A; Grillo, Stephanie L; Gerdes, Bryan C et al. (2018) Control of Neuronal Ryanodine Receptor-Mediated Calcium Signaling by Calsenilin. Mol Neurobiol :
Kaja, Simon; Payne, Andrew J; Naumchuk, Yuliya et al. (2017) Quantification of Lactate Dehydrogenase for Cell Viability Testing Using Cell Lines and Primary Cultured Astrocytes. Curr Protoc Toxicol 72:2.26.1-2.26.10
Gonzales, Eric B; Sumien, Nathalie (2017) Acidity and Acid-Sensing Ion Channels in the Normal and Alzheimer's Disease Brain. J Alzheimers Dis 57:1137-1144
Engler-Chiurazzi, E B; Brown, C M; Povroznik, J M et al. (2017) Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 157:188-211
Engler-Chiurazzi, Elizabeth B; Covey, Douglas F; Simpkins, James W (2017) A novel mechanism of non-feminizing estrogens in neuroprotection. Exp Gerontol 94:99-102

Showing the most recent 10 out of 132 publications