To determine the impact of an experimental intervention on aging, it is essential that an investigator have knowledge of how the intervention alters the pathological lesions that occur with age. Age-related pathology increases exponentially with advancing age and is largely responsible for age-related morbidity as well as mortality. Pathological information also provides investigators with insight into the potential biological/molecular mechanism(s) of the intervention. Furthermore, the pathological assessment of old animals that are included in basic studies of biological aging processes is necessary to help investigators determine whether the changes in physiological/biochemical parameters measured are associated with or are independent of underlying pathological conditions. Thus it is essential to obtain accurate and thorough pathological assessments of aging animals. The Pathology Core will provide investigators in the three Projects with detailed end-of-life pathological analyses of the lesions that occur with age in colonies of tissue-specific (liver, skeletal muscle and white adipose tissue [WAT]) GHRKO mice . The Pathology Core will also provide investigators in the four Projects with cross-sectional pathological analyses of the specific tissues obtained from Ames dwarf, GHRKO and tissue-specific GHRKO mice.
The Specific Aims of the Pathology Core are as follows:
Aim 1 : To conduct comprehensive pathological analyses of the genetically manipulated mice and their wild- type littermates that die spontaneously or are in the moribund category in the aging colonies.
Aim 2 : To conduct cross-sectional histopathological analyses of tissues obtained from genetically manipulated mice and their littermates. These data will allow investigators to evaluate the effect of the genetic manipulations on the histological changes in specific tissues at specific age.

Public Health Relevance

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Southern Illinois University School of Medicine
United States
Zip Code
Gesing, Adam; Wang, Feiya; List, Edward O et al. (2015) Expression of apoptosis-related genes in liver-specific growth hormone receptor gene-disrupted mice is sex dependent. J Gerontol A Biol Sci Med Sci 70:44-52
Li, Weiquan; Miller, Richard A (2015) Elevated ATF4 function in fibroblasts and liver of slow-aging mutant mice. J Gerontol A Biol Sci Med Sci 70:263-72
Lee, Changhan; Wan, Junxiang; Miyazaki, Brian et al. (2014) IGF-I regulates the age-dependent signaling peptide humanin. Aging Cell 13:958-61
Tran, Duc; Bergholz, Johann; Zhang, Haibo et al. (2014) Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell 13:669-78
Kopchick, John J; List, Edward O; Kelder, Bruce et al. (2014) Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications. Mol Cell Endocrinol 386:34-45
Jara, Adam; Benner, Chance M; Sim, Don et al. (2014) Elevated systolic blood pressure in male GH transgenic mice is age dependent. Endocrinology 155:975-86
Schneider, Augusto; Zhi, Xu; Bartke, Andrzej et al. (2014) Effect of growth hormone receptor gene disruption and PMA treatment on the expression of genes involved in primordial follicle activation in mice ovaries. Age (Dordr) 36:9701
Wiesenborn, Denise S; Ayala, Julio E; King, Emily et al. (2014) Insulin sensitivity in long-living Ames dwarf mice. Age (Dordr) 36:9709
Berryman, Darlene E; Lubbers, Ellen R; Magon, Vishakha et al. (2014) A dwarf mouse model with decreased GH/IGF-1 activity that does not experience life-span extension: potential impact of increased adiposity, leptin, and insulin with advancing age. J Gerontol A Biol Sci Med Sci 69:131-41
Hong, S Lee; Longo, Kenneth A; Gosney, Elahu et al. (2014) Increased metabolic flexibility and complexity in a long-lived growth hormone insensitive mouse model. J Gerontol A Biol Sci Med Sci 69:274-81

Showing the most recent 10 out of 67 publications