The overall goal of Project 1 is to use the human histone chaperone HIRA and the yeast post-translational modification enzyme, Sir2, as models to understand the structural basis for epigenetic control in aging and longevity;and to develop small molecule Sir2 effectors as reagents to study the linkage between epigenetic events and cell aging. HIRA forms a complex with ASFla to mediate transcriptional activation and formation of senescent heterochromatin, a process associated with tissue aging. Dr. Adams (Project 4) has also characterized new and related UBN proteins that interact with HIRA. These observations lead to the testable hypothesis that HIRA coordinates interactions with both ASFla and UBN proteins for chromatin regulation in senescence and gene activation. In preliminary studies, we have collaborated with Dr. 'Adams to characterize the structure and biochemistry of an ASFla/HIRA complex. The yeast Sir2 protein, and its orthologs in higher eukaryotes, are NAD+ dependent histone deacetylases. Yeast Sir2 promotes gene silencing and lifespan extension and its SIRT1 human ortholog has been implicated to counteract ageassociated diseases such as type-II diabetes, obesity and neurodegenerative disorders in mammals. In preliminary studies, we have determined crystal structures of the yeast Sir2 protein, Hst2, in various liganded forms and hypothesize that we can to use these structures as a molecular scaffold for the rational design of small molecule Sir2 effectors. In this proposal, we will combine biochemical, structural and small molecule screening methodologies to test our hypotheses with the following Specific Aims: (1) Determine the structural and biochemical basis for formation of a ASFla/HIRA/histone complex, (2) Determine the structural and biochemical basis for the role of UBN 1 and UBN2 in HIRA function, and (3) Develop small molecule activators and inhibitors of sirtuins as reagents to probe the involvement of sirtuins in epigenetic regulation and longevity in yeast. Our studies will be complemented by the largely biochemical, genetic, cell biology and organismal studies on the HIRA and sirtuin proteins that will be carried out by the other projects of the program, and the protein production capability of Core B, will contribute to the general understanding of the link between epigentics and aging and may lead to the development of small molecule compounds to treat age-associated disorders.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Berson, Amit; Sartoris, Ashley; Nativio, Raffaella et al. (2017) TDP-43 Promotes Neurodegeneration by Impairing Chromatin Remodeling. Curr Biol 27:3579-3590.e6
Bonini, Nancy M; Berger, Shelley L (2017) The Sustained Impact of Model Organisms-in Genetics and Epigenetics. Genetics 205:1-4
Mews, Philipp; Donahue, Greg; Drake, Adam M et al. (2017) Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546:381-386
Ricketts, M Daniel; Marmorstein, Ronen (2017) A Molecular Prospective for HIRA Complex Assembly and H3.3-Specific Histone Chaperone Function. J Mol Biol 429:1924-1933
Simithy, Johayra; Sidoli, Simone; Yuan, Zuo-Fei et al. (2017) Characterization of histone acylations links chromatin modifications with metabolism. Nat Commun 8:1141
Yang, Ting-Lin B; Chen, Qijun; Deng, Jennifer T et al. (2017) Mutual reinforcement between telomere capping and canonical Wnt signalling in the intestinal stem cell niche. Nat Commun 8:14766
Feng, Zijie; Wang, Lei; Sun, Yanmei et al. (2017) Menin and Daxx Interact to Suppress Neuroendocrine Tumors through Epigenetic Control of the Membrane Metallo-Endopeptidase. Cancer Res 77:401-411
Vizioli, Maria Grazia; Adams, Peter D (2016) Senescence Can Be BETter without the SASP? Cancer Discov 6:576-8
Sen, Payel; Shah, Parisha P; Nativio, Raffaella et al. (2016) Epigenetic Mechanisms of Longevity and Aging. Cell 166:822-839
Pchelintsev, Nikolay A; Adams, Peter D; Nelson, David M (2016) Critical Parameters for Efficient Sonication and Improved Chromatin Immunoprecipitation of High Molecular Weight Proteins. PLoS One 11:e0148023

Showing the most recent 10 out of 76 publications