Ubiquitin positive inclusions are found in amyotrophic lateral sclerosis (ALS), a prototypic motor neuron disease and frontotemporal lobar degeneration (FTLD), the second most common dementia after Alzheimer's disease in patients <65. Recently, investigators at the University of Pennsylvania (PENN) identified TDP-43 as the disease protein ubiquitinated in both disorders. Since motor neuron disease and dementia are found in ALS and FTLD, and since the same disease protein accumulates in both disease entities, this suggests that ALS and FTLD represent the same clinicopathological spectrum of a neurodegenerative syndrome. Thus, the major goals of this Program Project Grant (PPG) is to develop a vigorous research program focused on elucidating the etiology and pathogenesis of TDP-43 proteinopathies in ALS without or with cognitive impairment or dementia (designated as ALS, ALS-Cog and ALS-FTLD, respectively) and compare them to FTLD with and without ALS. The investigators of this new PPG are a close-knit and highly integrated multidisciplinary group of PENN physicians and basic scientists who have formed a productive collaborative alliance and established a very comprehensive clinical and basic science research program at PENN to study ALS, ALS-Cog and ALS-FTLD in patients, in human postmortem tissues and in model systems. These investigators propose a set of bold objectives for ALS and FTLD research that will be implemented through 4 Cores and 3 Projects. Specifically, they will: 1) recruit ALS, ALS-Cog and ALS-FTLD patients;2) develop new algorithms to characterize the cognitive impairments and dementia in ALS patients;3) test the hypothesis that there is a tight link between language and motor systems in the representation of action verbs;4) further characterize the spectrum of TDP-43 neuropathologies in ALS, ALS-Cog and ALS-FTLD brains and compare them with FTLD with and without ALS;5) identify hyperphosphorylated residues and N-terminal cleavage sites that generate C-terminal fragments in pathological TDP-43 and determine their significance in mechanisms of TDP-43 proteinopathies;6) establish cell culture and transgenic mouse models of TDP-43;7) use these models to elucidate the pathogenic mechanisms of neurodegeneration in TDP-43;8) determine if genetic variants in TDP-43 found in patients with ALS, ALS-Cog and ALS-FTLD are disease risk factors or pathogenic disease causing mutations;These and other studies will lead to improved understanding of the cognitive impairments and dementia in ALS as well as provide insights on the diagnosis and treatment of these disorders.

Public Health Relevance

The basic, Clinical and translational studies proposed in the 4 Cores and 3 Projects here in this Program Project Grant represent an interdisciplinary, synergistic and complementary team effort to increase understanding of the cognitive impairments and dementia in amyotrophic lateral sclerosis (ALS) as well as provide insights on the diagnosis and treatment of ALS and its different clinical manifestations, especially those that affect cognition. Thus, this PPG addresses important questions in the field of ALS research.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG032953-05
Application #
8723014
Study Section
Special Emphasis Panel ()
Program Officer
Petanceska, Suzana
Project Start
2010-09-30
Project End
2015-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
5
Fiscal Year
2014
Total Cost
$1,157,186
Indirect Cost
$433,945
Name
University of Pennsylvania
Department
Pathology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Russ, Jenny; Liu, Elaine Y; Wu, Kathryn et al. (2015) Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol 129:39-52
McMillan, Corey T; Toledo, Jon B; Avants, Brian B et al. (2014) Genetic and neuroanatomic associations in sporadic frontotemporal lobar degeneration. Neurobiol Aging 35:1473-82
Spotorno, Nicola; McMillan, Corey T; Powers, John P et al. (2014) Counting or chunking? Mathematical and heuristic abilities in patients with corticobasal syndrome and posterior cortical atrophy. Neuropsychologia 64C:176-183
Ferrari, Raffaele; Hernandez, Dena G; Nalls, Michael A et al. (2014) Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol 13:686-99
Serrano, Geidy E; Sabbagh, Marwan N; Sue, Lucia I et al. (2014) Positive florbetapir PET amyloid imaging in a subject with frequent cortical neuritic plaques and frontotemporal lobar degeneration with TDP43-positive inclusions. J Alzheimers Dis 42:813-21
Irwin, David J; McMillan, Corey T; Suh, EunRan et al. (2014) Myelin oligodendrocyte basic protein and prognosis in behavioral-variant frontotemporal dementia. Neurology 83:502-9
McGurk, Leeanne; Lee, Virginia M; Trojanowksi, John Q et al. (2014) Poly-A binding protein-1 localization to a subset of TDP-43 inclusions in amyotrophic lateral sclerosis occurs more frequently in patients harboring an expansion in C9orf72. J Neuropathol Exp Neurol 73:837-45
Alfieri, Julio A; Pino, Natalia S; Igaz, Lionel M (2014) Reversible behavioral phenotypes in a conditional mouse model of TDP-43 proteinopathies. J Neurosci 34:15244-59
Walker, Adam K; Daniels, Christine M LaPash; Goldman, James E et al. (2014) Astrocytic TDP-43 pathology in Alexander disease. J Neurosci 34:6448-58
McCluskey, Leo F; Geser, Felix; Elman, Lauren B et al. (2014) Atypical Alzheimer's disease in an elderly United States resident with amyotrophic lateral sclerosis and pathological tau in spinal motor neurons. Amyotroph Lateral Scler Frontotemporal Degener 15:466-72

Showing the most recent 10 out of 70 publications