The purpose of the Bone Biology Core (Core B) is to provide a standardized set of bone assay services that will facilitate completion ofthe broader goals and objections ofthe Program Project goals and specific aims. The objective of this Program Project application is to understand how age-associated changes in nutrient-related factors alters the environmental milieu of stem cells in bone. Each ofthe three projects investigates different aspects ofthese nutrient-related signals, yet all will employ similar techniques and animal models. The Bone Biology Core will provide each investigator with standard assay services in the areas of bone histology and histomorphometry, imaging, densitometry, biomechanics, and serum biochemistry. Dr. Mark Hamrick will be the core director. He is a bone biologist with experience and expertise in the areas of bone histomorphometry, densitometry, and biomechanics with particular emphasis on the use of animal models in bone metabolism research. He will be responsible for overseeing all administrative issues related to the Core B fadlities, as well as supervising the collection, preparation, and distribution of bone specimens. The Core will serve as the major center for data collection related to bone metabolism, and as such represents a key component linking the individual projects. Moreover, the Core seeks to develop new technologies in support of future research activities related to the objectives of the Program Project grant.

Public Health Relevance

Core B will provide assay services related to bone histology, biomechanics, bone imaging, and serum biochemistry, and is therefore essential to successful completion of the Program Project goals and objectives.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-8)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Georgia Regents University
United States
Zip Code
El Refaey, Mona; Zhong, Qing; Hill, William D et al. (2014) Aromatic amino acid activation of signaling pathways in bone marrow mesenchymal stem cells depends on oxygen tension. PLoS One 9:e91108
Herberg, Samuel; Kondrikova, Galina; Periyasamy-Thandavan, Sudharsan et al. (2014) Inkjet-based biopatterning of SDF-1? augments BMP-2-induced repair of critical size calvarial bone defects in mice. Bone 67:95-103
Pan, Guodong; Cao, Jay; Yang, Nianlan et al. (2014) Role of glucocorticoid-induced leucine zipper (GILZ) in bone acquisition. J Biol Chem 289:19373-82
Refaey, Mona El; Zhong, Qing; Ding, Ke-Hong et al. (2014) Impact of dietary aromatic amino acids on osteoclastic activity. Calcif Tissue Int 95:174-82
Herberg, Samuel; Shi, Xingming; Johnson, Maribeth H et al. (2013) Stromal cell-derived factor-1? mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. PLoS One 8:e58207
Arounleut, Phonepasong; Bialek, Peter; Liang, Li-Fang et al. (2013) A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength. Exp Gerontol 48:898-904
Bollag, Wendy B; Isales, Carlos M (2013) GRowing an epidermal tumor. J Invest Dermatol 133:2659-62
Fulzele, Sadanand; Chothe, Paresh; Sangani, Rajnikumar et al. (2013) Sodium-dependent vitamin C transporter SVCT2: expression and function in bone marrow stromal cells and in osteogenesis. Stem Cell Res 10:36-47
Herberg, Samuel; Fulzele, Sadanand; Yang, Nianlan et al. (2013) Stromal cell-derived factor-1* potentiates bone morphogenetic protein-2-stimulated osteoinduction of genetically engineered bone marrow-derived mesenchymal stem cells in vitro. Tissue Eng Part A 19:1-13
Bowser, Matthew; Herberg, Samuel; Arounleut, Phonepasong et al. (2013) Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells. Exp Gerontol 48:290-7

Showing the most recent 10 out of 13 publications