Mammalian aging is associated with functional defects in numerous tissues that require replenishment of lost or damaged cells during life. Many observations in the literature provide evidence that stem cells and progenitor cells are altered with advancing age. However, the specific gene pathways that govern stem cell aging and the precise changes that occur in tissue progenitor cells during aging remain to be defined. We will use genetically engineered mice to study specific gene pathways implicated in stem cell aging. These include the Wnt pathway (Projects 1, 2 and 3), the telomerase pathway (Project 2) and the Insulin/Foxo pathway (Project 3). We will investigate stem cell function in several tissues with well defined stem cell populations, including muscle stem cells (Project 1), skin and intestinal stem cells (Project 2) and neural stem cells (Project 3). The Core will support the state-of-the-art mouse genetic approaches which focus on sophisticated loss-of-function studies in vivo using Cre-lox technologies.
The Aims of the Core are:
Specific Aim 1. To generate all the genetically engineered mouse cohorts and controls for analysis of stem cell biology and aging for sharing among the three laboratories of the Program Project.
Specific Aim 2. To provide histology services to support each project including tissue harvesting, fixation and tissue section preparation for analysis among the three laboratories of the Program Project.
Specific Aim 3. To procure and house wild-type mice from the NIA's Aging Mouse Colony for analysis of aging wild-type mice by the three laboratories of the Program Project.

Public Health Relevance

Emerging evidence indicates that altered stem cell function can contribute to human aging. However, the precise changes that occur in stem cells with advancing age and the pathways that govern these changes remain obscure. Investigating the function of three pathways - Wnts, telomerase and Foxo3 - in stem cell biology and aging will greatly enhance our ability to intervene in the aging process..

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-2)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
de Morrée, Antoine; van Velthoven, Cindy T J; Gan, Qiang et al. (2017) Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proc Natl Acad Sci U S A 114:E8996-E9005
Rando, Thomas A (2017) Fleeting factors, turning back time. Nat Biotechnol 35:218-220
van Velthoven, Cindy T J; de Morree, Antoine; Egner, Ingrid M et al. (2017) Transcriptional Profiling of Quiescent Muscle Stem Cells In Vivo. Cell Rep 21:1994-2004
Dulken, Ben W; Leeman, Dena S; Boutet, Stéphane C et al. (2017) Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage. Cell Rep 18:777-790
Rodgers, Joseph T; Schroeder, Matthew D; Ma, Chanthia et al. (2017) HGFA Is an Injury-Regulated Systemic Factor that Induces the Transition of Stem Cells into GAlert. Cell Rep 19:479-486
Stearns-Reider, Kristen M; D'Amore, Antonio; Beezhold, Kevin et al. (2017) Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell 16:518-528
Quarta, Marco; Cromie, Melinda; Chacon, Robert et al. (2017) Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat Commun 8:15613
Brunet, Anne; Rando, Thomas A (2017) Interaction between epigenetic and metabolism in aging stem cells. Curr Opin Cell Biol 45:1-7
Luo, Dan; de Morree, Antoine; Boutet, Stephane et al. (2017) Deltex2 represses MyoD expression and inhibits myogenic differentiation by acting as a negative regulator of Jmjd1c. Proc Natl Acad Sci U S A 114:E3071-E3080
Du, Hongqing; Shih, Chung-Hsuan; Wosczyna, Michael N et al. (2017) Macrophage-released ADAMTS1 promotes muscle stem cell activation. Nat Commun 8:669

Showing the most recent 10 out of 80 publications