The Systems Biology and Bioinformatics Core will support the Program Subprojects and Cores in data management and analysis. We will achieve this by providing statistical sen/ices, bioinformatics collaboration and data management across the entirety of the program project. Merging biostatistical expertise at the Mayo Clinic and bioinformatics expertise at the Buck Institute for Research on Aging Bioinformatics Core, together we represent a significant resource for participant investigators. We will achieve this goal through three service-based aims. First, we will provide bioinformatics collaboration through pathway analysis, network modeling and comparative genomic analysis of tissue specific effects in mice and humans. Second, we will provide data management sen/ices with the goal of integration and cross project analyses. Finally, we will provide biostatistical analysis to ensure that each experiment within the program project is sufficiently powered and the resulting analysis is quantitatively sound. Together this represents a comprehensive approach to providing quantitative methodologies to the project.

Public Health Relevance

Modern biomedical research is largely data driven. This Core will provide access to and analysis of public and project generated data as it relates to aging and cellular senescence. To do this, we will combine biostatistics, data management and bioinformatic analysis to enable generation and testing of new hypotheses.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
4P01AG041122-05
Application #
9065457
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Schafer, Marissa J; Miller, Jordan D; LeBrasseur, Nathan K (2017) Cellular senescence: Implications for metabolic disease. Mol Cell Endocrinol 455:93-102
Stout, Michael B; Steyn, Frederik J; Jurczak, Michael J et al. (2017) 17?-Estradiol Alleviates Age-related Metabolic and Inflammatory Dysfunction in Male Mice Without Inducing Feminization. J Gerontol A Biol Sci Med Sci 72:3-15
Zhou, Dan; Hlady, Ryan A; Schafer, Marissa J et al. (2017) High fat diet and exercise lead to a disrupted and pathogenic DNA methylome in mouse liver. Epigenetics 12:55-69
Kandhaya-Pillai, Renuka; Miro-Mur, Francesc; Alijotas-Reig, Jaume et al. (2017) TNF?-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. Aging (Albany NY) 9:2411-2435
Demaria, Marco; O'Leary, Monique N; Chang, Jianhui et al. (2017) Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov 7:165-176
Palmer, Allyson K; Kirkland, James L (2016) Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Exp Gerontol 86:97-105
Zhu, Yi; Tchkonia, Tamara; Fuhrmann-Stroissnigg, Heike et al. (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15:428-35
Comisford, Ross; Lubbers, Ellen R; Householder, Lara A et al. (2016) Growth Hormone Receptor Antagonist Transgenic Mice Have Increased Subcutaneous Adipose Tissue Mass, Altered Glucose Homeostasis and No Change in White Adipose Tissue Cellular Senescence. Gerontology 62:163-72
Schafer, Marissa J; White, Thomas A; Evans, Glenda et al. (2016) Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. Diabetes 65:1606-15
Baker, Darren J; Childs, Bennett G; Durik, Matej et al. (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184-9

Showing the most recent 10 out of 51 publications