The Administrative Core (Core A) will provide the mechanism to plan, evaluate, and manage the four Projects and two other Gores in this proposed Program Project (PPG). The goals of Core A are to provide scientific, programmatic, and fiscal leadership and facilitate communication between all researchers to ensure that the Projects fulfill the goals set forth in the proposal and meet the administrative and financial requirements ofthe NIH, the University of Rochester and the two other institutions involved, Harvard Medical School in Boston, and the Albert Einstein College of Medicine in New York. Core A will facilitate monthly meetings by videoconference and annual face-to-face meetings. The Core will also be responsible for the communication between the PPG and the NIH. Further, the Core will ensure that the results of each Project are disseminated in a timely manner for the benefit of the scientific community. To this end. Core A will facilitate the submission of joint publications and, in collaboration with Core C, will maintain a database for all biological specimens and data generated by the Projects and Cores. Finally, Core A will establish the external Scientific Advisory Board and will organize biennial reviews by this board.

Public Health Relevance

The Administrative Core will be responsible for maintaining cohesion and synergy between the different projects and cores by facilitating the interaction and exchange of information and materials between project participants. The Core will ensure that the project goals are met, oversee dissemination of data, as well as fiscal management, adherence to NIH rules and regulations, and interaction with the NIH.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Rochester
United States
Zip Code
Milholland, Brandon; Suh, Yousin; Vijg, Jan (2017) Mutation and catastrophe in the aging genome. Exp Gerontol 94:34-40
Dong, Xiao; Zhang, Lei; Milholland, Brandon et al. (2017) Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. Nat Methods 14:491-493
Vijg, Jan; Dong, Xiao; Zhang, Lei (2017) A high-fidelity method for genomic sequencing of single somatic cells reveals a very high mutational burden. Exp Biol Med (Maywood) 242:1318-1324
Petkovich, Daniel A; Podolskiy, Dmitriy I; Lobanov, Alexei V et al. (2017) Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions. Cell Metab 25:954-960.e6
Milholland, Brandon; Dong, Xiao; Zhang, Lei et al. (2017) Differences between germline and somatic mutation rates in humans and mice. Nat Commun 8:15183
Valenzano, Dario Riccardo; Aboobaker, Aziz; Seluanov, Andrei et al. (2017) Non-canonical aging model systems and why we need them. EMBO J 36:959-963
Tian, Xiao; Seluanov, Andrei; Gorbunova, Vera (2017) Beyond Making Ends Meet: DNA-PK, Metabolism, and Aging. Cell Metab 25:991-992
Tian, Xiao; Seluanov, Andrei; Gorbunova, Vera (2017) Molecular Mechanisms Determining Lifespan in Short- and Long-Lived Species. Trends Endocrinol Metab 28:722-734
Yang, Chun-Song; Jividen, Kasey; Spencer, Adam et al. (2017) Ubiquitin Modification by the E3 Ligase/ADP-Ribosyltransferase Dtx3L/Parp9. Mol Cell 66:503-516.e5
Bozek, Katarzyna; Khrameeva, Ekaterina E; Reznick, Jane et al. (2017) Lipidome determinants of maximal lifespan in mammals. Sci Rep 7:5

Showing the most recent 10 out of 49 publications