While genetic susceptibility and environment clearly represent realms of influence for the development of type 1 diabetes, a series of immunological abnormalities are inherent to the immune dysregulation that results in the autoimmune destruction of pancreatic (3 cells. Indeed, our previous PO1 studies of individuals with or at increased-risk for type 1 diabetes, as well as in the non-obese diabetic (NOD) mouse model of the disease, associated a series of specialized immune system cells and specific mediators with the disorder. However, issues related to the interplay between these specialized cells and the mediators that allow for abnormal immune regulation, the specificity of these immunological defects in type 1 diabetes versus other autoimmune and metabolic disorders, as well as the ontogeny of immune dysregulation in the natural history of the disease (both prior to and after onset) remain unclear. Our goal in seeking renewal of this P01 grant is to address these outstanding issues;all for the continued purpose of testing our hypothesis that antigen presenting cells (dendritic cells, macrophage/monocytes), through their interaction with components of the cellular immune system (iNKT cells, regulatory T cells), form a critical facet to the immune dysregulation which results in type 1 diabetes. This P01 renewal will examine this hypothesis through three separate but highly interactive Projects. The Projects utilize the NOD mouse model and an extremely valuable population of human subjects with or at increased-risk for type 1 diabetes, as well as healthy controls or persons with type 2 diabetes. The PO1 application is comprised of three Projects: Project 1 (S.B. Wilson, PI) - iNKT Cell Gene Expression and Effector Function in Type 1 Diabetes;Project 2 (M. Clare-Salzler, PI) - Interferons alpha/beta in Type 1 Diabetes Pathogenesis;and Project 3 (M. Atkinson, PI) - Immune Regulation and Type 1 Diabetes Pathogenesis. The projects will be supported by two well established Core facilities: A-Administration;B-Pathology &Immunology. The successful completion of these P01 studies should prove beneficial to improving our understanding of those events critical to the natural history of type 1 diabetes, identifying markers that enhance our ability to monitor cellular immune activities in the disease, uncovering the interplay between the genetics, environment and the immune response in the pathogenesis of type 1 diabetes, as well as developing immunotherapies capable of preventing or reversing the disorder.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI042288-14
Application #
8131066
Study Section
Special Emphasis Panel (ZAI1-TP-I (S1))
Program Officer
Bourcier, Katarzyna
Project Start
1997-09-30
Project End
2013-04-30
Budget Start
2011-09-01
Budget End
2013-04-30
Support Year
14
Fiscal Year
2011
Total Cost
$1,117,395
Indirect Cost
Name
University of Florida
Department
Pathology
Type
Schools of Medicine
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Perry, Daniel J; Wasserfall, Clive H; Oram, Richard A et al. (2018) Application of a Genetic Risk Score to Racially Diverse Type 1 Diabetes Populations Demonstrates the Need for Diversity in Risk-Modeling. Sci Rep 8:4529
Chen, Yi-Guang; Mathews, Clayton E; Driver, John P (2018) The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front Endocrinol (Lausanne) 9:51
Kusmartseva, Irina; Beery, Maria; Philips, Tiffany et al. (2018) Hospital time prior to death and pancreas histopathology: implications for future studies. Diabetologia 61:954-958
Hu, Ronghua; Xia, Chang-Qing; Butfiloski, Edward et al. (2018) Effect of high glucose on cytokine production by human peripheral blood immune cells and type I interferon signaling in monocytes: Implications for the role of hyperglycemia in the diabetes inflammatory process and host defense against infection. Clin Immunol 195:139-148
Smith, Mia J; Rihanek, Marynette; Wasserfall, Clive et al. (2018) Loss of B-Cell Anergy in Type 1 Diabetes Is Associated With High-Risk HLA and Non-HLA Disease Susceptibility Alleles. Diabetes 67:697-703
Wallet, Mark A; Santostefano, Katherine E; Terada, Naohiro et al. (2017) Isogenic Cellular Systems Model the Impact of Genetic Risk Variants in the Pathogenesis of Type 1 Diabetes. Front Endocrinol (Lausanne) 8:276
Seay, Howard R; Putnam, Amy L; Cserny, Judit et al. (2017) Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy. Mol Ther Methods Clin Dev 4:178-191
Wasserfall, Clive; Nick, Harry S; Campbell-Thompson, Martha et al. (2017) Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata. Cell Metab 26:568-575.e3
Li, Xia; Campbell-Thompson, Martha; Wasserfall, Clive H et al. (2017) Serum Trypsinogen Levels in Type 1 Diabetes. Diabetes Care 40:577-582
Chen, Jing; Chernatynskaya, Anna V; Li, Jian-Wei et al. (2017) T cells display mitochondria hyperpolarization in human type 1 diabetes. Sci Rep 7:10835

Showing the most recent 10 out of 117 publications