"The development of TID relies on interrelationships between cells of the immune system (e.g., DC, Teff, Treg), genes imparting susceptibility or resistance to the disease, and certain cytokines that appear key to the process underlying the autoimmune destruction of insulin producing pancreatic p cells." Variations on such a statement are common to most descriptions of TID to the point of serving as a central dogma for the pathogenesis of this disorder. While a broad body of evidence certainly exists to support this notion (and we ourselves believe it true), the exact mechanisms by which autoimmune (3 cell destruction is facilitated remain unclear. In addition, the relative contributions of each facet (i.e., cells, genes, cytokines) to the process remain, to a large extent, unknown. This forms a major void for attempts seeking to prevent and/or reverse the disease, as well as to identify improved biomarkers of disease progression &therapeutic efficacy. For these reasons, we deem it essential to perform the proposed research . Within this Specific Aims section of the POI overview, we identify our overall goals as well as the expected mechanistic / experimental outcomes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
2P01AI042288-15A1
Application #
8566443
Study Section
Special Emphasis Panel (ZAI1-PA-I (M1))
Project Start
Project End
Budget Start
2013-05-10
Budget End
2014-04-30
Support Year
15
Fiscal Year
2013
Total Cost
$404,897
Indirect Cost
$133,154
Name
University of Florida
Department
Type
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Haller, Michael J; Gitelman, Stephen E; Gottlieb, Peter A et al. (2016) Antithymocyte Globulin Plus G-CSF Combination Therapy Leads to Sustained Immunomodulatory and Metabolic Effects in a Subset of Responders With Established Type 1 Diabetes. Diabetes 65:3765-3775
Delitto, Daniel; Delitto, Andrea E; DiVita, Bayli B et al. (2016) Human pancreatic cancer cells induce a MyD88-dependent stromal response to promote a tumor-tolerant immune microenvironment. Cancer Res :
Seay, Howard R; Yusko, Erik; Rothweiler, Stephanie J et al. (2016) Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight 1:e88242
Bian, Xiaofang; Wallstrom, Garrick; Davis, Amy et al. (2016) Immunoproteomic Profiling of Antiviral Antibodies in New-Onset Type 1 Diabetes Using Protein Arrays. Diabetes 65:285-96
Campbell-Thompson, Martha L; Kaddis, John S; Wasserfall, Clive et al. (2016) The influence of type 1 diabetes on pancreatic weight. Diabetologia 59:217-21
Babon, Jenny Aurielle B; DeNicola, Megan E; Blodgett, David M et al. (2016) Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med 22:1482-1487
Battaglia, Manuela; Atkinson, Mark A (2015) The streetlight effect in type 1 diabetes. Diabetes 64:1081-90
Haller, Michael J; Gitelman, Stephen E; Gottlieb, Peter A et al. (2015) Anti-thymocyte globulin/G-CSF treatment preserves β cell function in patients with established type 1 diabetes. J Clin Invest 125:448-55
Oleson, Bryndon J; McGraw, Jennifer A; Broniowska, Katarzyna A et al. (2015) Distinct differences in the responses of the human pancreatic β-cell line EndoC-βH1 and human islets to proinflammatory cytokines. Am J Physiol Regul Integr Comp Physiol 309:R525-34
Ulmer, Candice Z; Yost, Richard A; Chen, Jing et al. (2015) Liquid Chromatography-Mass Spectrometry Metabolic and Lipidomic Sample Preparation Workflow for Suspension-Cultured Mammalian Cells using Jurkat T lymphocyte Cells. J Proteomics Bioinform 8:126-132

Showing the most recent 10 out of 90 publications