Project 1. Avoidance of autoimmunity relies on carefully regulated and appropriate interplay between genetics, the environment, and components of both the innate and adaptive (acquired) immune systems; a central hypothesis to this P01. Given the innate immune system's role in monitoring the microbiologic and biochemical environments, and providing rapid protective acquired immune responses, it is well positioned to break tolerance in response to environmental signals. Dendritic Cells [DC] provide this linkage, in part, through pattern recognition receptors [e.g., toll like receptors [TLR], and retinoic acid-induced gene 1-likereceptors [RLR] that detect bacterial/viral/biochemical and self molecular signatures leading td DC activation and inflammation. DC activation by TLR/RLR results in Type 1 interferons [IFN?/?] that drive DC maturation, THI, antibody, and CTL responses. Project 1 poses an interdigitating hypothesis; the conjoint defects in type 1 IFN biology, hyperactive IFN?/? responses and increased plasmacytoid DC (PDC)/IFN?/? production in the islet microenvironment play a critical role in T1D pathogenesis. These defects, investigated with Project 2, promote; a) loss of B cell function, b) immunogenic DC, c) pro-inflammatory macrophages [MF], d) THI responses, e) enhanced CTL and p cell killing and f) downgrading of protective Treg and iNKT cell responses. As a corollary, the defects reach full potential when PDC or other immune cells are activated by exogenous or endogenous factors that stimulate IFN?/? production, linking environment and immunogenetics. In addition, a major emphasis will be to evaluate the effect of specific candidate genotypes, (Ifihl,Tyk2) identified in genome wide association studies (GWAS) and affecting IFN?/? biology, on specific immune cell function and p cell function. We believe Project 1 finds marked significance and innovation through the integrative approach afforded by the P01 mechanism (with Project 2), and quite importantly, our ability to explore lymphoid and pancreatic tissues from the nPOD program.

Public Health Relevance

In sum, patients with type 1 diabetes, as well as those at risk for developing the disease, would benefit from this translational research effort. In addition. Project 1 holds the promise of providing detailed mechanistic information on disease pathogenesis of human TID, as well as novel therapeutics for preventing and/or reversing the disorder.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
4P01AI042288-18
Application #
9052685
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
18
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Florida
Department
Type
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Perry, Daniel J; Wasserfall, Clive H; Oram, Richard A et al. (2018) Application of a Genetic Risk Score to Racially Diverse Type 1 Diabetes Populations Demonstrates the Need for Diversity in Risk-Modeling. Sci Rep 8:4529
Chen, Yi-Guang; Mathews, Clayton E; Driver, John P (2018) The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front Endocrinol (Lausanne) 9:51
Kusmartseva, Irina; Beery, Maria; Philips, Tiffany et al. (2018) Hospital time prior to death and pancreas histopathology: implications for future studies. Diabetologia 61:954-958
Hu, Ronghua; Xia, Chang-Qing; Butfiloski, Edward et al. (2018) Effect of high glucose on cytokine production by human peripheral blood immune cells and type I interferon signaling in monocytes: Implications for the role of hyperglycemia in the diabetes inflammatory process and host defense against infection. Clin Immunol 195:139-148
Smith, Mia J; Rihanek, Marynette; Wasserfall, Clive et al. (2018) Loss of B-Cell Anergy in Type 1 Diabetes Is Associated With High-Risk HLA and Non-HLA Disease Susceptibility Alleles. Diabetes 67:697-703
O'Kell, Allison L; Wasserfall, Clive; Catchpole, Brian et al. (2017) Comparative Pathogenesis of Autoimmune Diabetes in Humans, NOD Mice, and Canines: Has a Valuable Animal Model of Type 1 Diabetes Been Overlooked? Diabetes 66:1443-1452
Newby, Brittney N; Brusko, Todd M; Zou, Baiming et al. (2017) Type 1 Interferons Potentiate Human CD8+ T-Cell Cytotoxicity Through a STAT4- and Granzyme B-Dependent Pathway. Diabetes 66:3061-3071
Whitener, Robert L; Gallo Knight, Lisa; Li, Jianwei et al. (2017) The Type 1 Diabetes-Resistance Locus Idd22 Controls Trafficking of Autoreactive CTLs into the Pancreatic Islets of NOD Mice. J Immunol 199:3991-4000
Wang, Qiming; Racine, Jeremy J; Ratiu, Jeremy J et al. (2017) Transient BAFF Blockade Inhibits Type 1 Diabetes Development in Nonobese Diabetic Mice by Enriching Immunoregulatory B Lymphocytes Sensitive to Deletion by Anti-CD20 Cotherapy. J Immunol 199:3757-3770
Yeh, Wen-I; Seay, Howard R; Newby, Brittney et al. (2017) Avidity and Bystander Suppressive Capacity of Human Regulatory T Cells Expressing De Novo Autoreactive T-Cell Receptors in Type 1 Diabetes. Front Immunol 8:1313

Showing the most recent 10 out of 117 publications