Francisella tularensis is a class A bacterial select agent due to its extreme pathogenicity and potential use as a bioweapon. Early studies by Carlisle and Hood have indicated that F. tularensis produces a capsule-like material. Many bacteria produce capsules and the genes required to produce them encode proteins for transport, biosynthesis and regulation. Homologs of genes implicated in capsular biosynthesis are present in the Francisella genome database. Preliminary studies, using electron microscopy, indicate and confirm that a capsule-like material (CLM) surrounds F. tularensis. We can now isolate this material, free from Francisella LPS, based on chemical, chromatographic and immunochemical analysis. This material is loosely associated with the bacterial cell, is easily removed from the bacterial surface and is composed of a repeating tetrasaccharide repeat. Using transposon mutagenesis in F. tularensis Schu S4, we have identified a number of mutants with no or limited reactivity to our CLM specific antibody XE8. We have currently identified the site of insertion of 7 of these transposon mutants that have altered CLM expression that will serve as acapsular strains for the studies in this proposal. Based on these observations, we would pose the following hypotheses 1) Francisella tularensis expresses a capsular-like material that is important in pathogenesis and that we believe is a group 1 capsule;2) Alteration of this capsule-like structure by mutations of the genes involved in biosynthesis and expression of CLM will alter pathogenicity of Francisella tularensis in cell culture models and in an animal model of respiratory infection;3) Induction of an immune response targeted to the CLM will provide host immunity. The following specific aims will be used to resolve these hypotheses: 1) Characterization of the F. tularensis Schu S4 mutants that are defective in production of capsule-like material and 2) Characterization of the biological role of the P. tularensis Schu S4 capsule like material and 3) Study the immunogenicity and protective efficacy of passive and active immunization in murine models of Francisella infection

Public Health Relevance

The proposed work will focus on characterizing the Francisella capsule-like material which remains poorly understood. There is a significant possibility that efforts to understand this potentially critical virulence factor will not only increase our understanding of Francisella pathogenesis but open up new avenues for therapeutic development, using acapsular strains or antibodies to the capsule-like material.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI044642-13
Application #
8515288
Study Section
Special Emphasis Panel (ZAI1-LG-I)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
13
Fiscal Year
2013
Total Cost
$459,529
Indirect Cost
$129,366
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Stevenson, Taylor C; Cywes-Bentley, Colette; Moeller, Tyler D et al. (2018) Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. Proc Natl Acad Sci U S A 115:E3106-E3115
Grishkovskaya, Irina; Paumann-Page, Martina; Tscheliessnig, Rupert et al. (2017) Structure of human promyeloperoxidase (proMPO) and the role of the propeptide in processing and maturation. J Biol Chem 292:8244-8261
Post, Deborah M B; Slütter, Bram; Schilling, Birgit et al. (2017) Characterization of Inner and Outer Membrane Proteins from Francisella tularensis Strains LVS and Schu S4 and Identification of Potential Subunit Vaccine Candidates. MBio 8:
Wacker, Mark A; Teghanemt, Athmane; Weiss, Jerrold P et al. (2017) High-affinity caspase-4 binding to LPS presented as high molecular mass aggregates or in outer membrane vesicles. Innate Immun 23:336-344
Greenlee-Wacker, Mallary C; Kremserová, Silvie; Nauseef, William M (2017) Lysis of human neutrophils by community-associated methicillin-resistant Staphylococcus aureus. Blood 129:3237-3244
Greenlee-Wacker, Mallary C; Nauseef, William M (2017) IFN-? targets macrophage-mediated immune responses toward Staphylococcus aureus. J Leukoc Biol 101:751-758
Greenlee-Wacker, Mallary C (2016) Clearance of apoptotic neutrophils and resolution of inflammation. Immunol Rev 273:357-70
Nauseef, William M (2016) Neutrophils, from cradle to grave and beyond. Immunol Rev 273:5-10
Kinkead, Lauren C; Allen, Lee-Ann H (2016) Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan. Immunol Rev 273:266-81
Nauseef, William M; Kubes, Paul (2016) Pondering neutrophil extracellular traps with healthy skepticism. Cell Microbiol 18:1349-57

Showing the most recent 10 out of 93 publications