Genome-wide analyses of MS susceptibility loci have emphasized the importance of MHC class II genes, strongly implicating antigen presentation to CD4 T cells as a key process in the pathogenesis of MS. However, it has been very difficult to study myelin-specific CD4 T cells from MS patients ex vivo, due to low T cell receptor affinities for the relevant peptide-MHC complexes. Therefore, two fundamental questions remain unresolved: First, which molecular properties distinguish myelin-specific T cells in patients with MS from those in healthy individuals? Second, are there distinguishing properties of myelin-specific and virusspecific T cells that could be exploited for therapeutic gain? In Aim 1, we will study TCR recognition by myelin-specific T cells from MS patients. Imaging experiments identified alterations in immunological synapse formation by myelin-specific compared to virus-specific T cells, and structural studies demonstrated unusual binding topologies by some myelin-specific TCRs isolated from MS patients. The Garcia lab recently developed a yeast peptide-MHC display approach to identify entirely novel peptide ligands for a given TCR and showed that one ofthe peptides was recognized with a non-conventional TCR topology and failed to induce signaling. This means that TCR binding topology can have a profound effect on signaling. This approach will be used to examine the irnpact of TCR topology on the function of myelin-specific T cells and determine whether administration of such peptides can prevent spontaneous disease in human TCR/MHC transgenic mice.
In Aim 2, we will collaborate with Drs. Love and Hafler to study myelin and virus-specific T cells from MS patients and control subjects identified with the nanowell device. Antigenresponsive T cells will be isolated from nanowells with a robotic device, which enables detailed molecular characterization of myelin-specific T cell populations. The transcriptome of myelin-specific T cells from MS patients and control subjects will be examined, with an emphasis on the expression of genes associated with susceptibility to MS, transcription factors and cytokine signaling molecules. Clonal expansion of myelinspecific will be assessed by sequencing of TCR chains, and the frequency of myelin-reactive TCR sequences in peripheral blood and CSF T cells will be determined by lllumina sequencing ofthe TCR repertoire. These studies will determine whether myelin-specific T cells with particular cytokine proflles and/or gene expression programs are preferentially expanded in MS patients compared to healthy subjects.

Public Health Relevance

This project aims to identify molecular properties that distinguish myelin-specific T cells from MS patients and healthy subjects. This is a central issue in the autoimmunity field that has been difficult to address because ex vivo isolation of myelin-specific T cells has been very challenging. The nanowell technology now enables comprehensive characterization of these cells at the level of immunological, synapse formation, the T cell receptor repertoire and the transcriptome. The goal of these efforts is to develop novel biomarkers for immune monitoring in MS and to identif/ novel targets for therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
2P01AI045757-15
Application #
8583032
Study Section
Special Emphasis Panel (ZAI1-MM-I (M1))
Project Start
2013-09-01
Project End
2018-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
15
Fiscal Year
2013
Total Cost
$316,356
Indirect Cost
$75,484
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Ito, Yoshinaga; Ashenberg, Orr; Pyrdol, Jason et al. (2018) Rapid CLIP dissociation from MHC II promotes an unusual antigen presentation pathway in autoimmunity. J Exp Med 215:2617-2635
Ponath, Gerald; Lincoln, Matthew R; Levine-Ritterman, Maya et al. (2018) Enhanced astrocyte responses are driven by a genetic risk allele associated with multiple sclerosis. Nat Commun 9:5337
Sumida, Tomokazu; Lincoln, Matthew R; Ukeje, Chinonso M et al. (2018) Activated ?-catenin in Foxp3+ regulatory T cells links inflammatory environments to autoimmunity. Nat Immunol 19:1391-1402
Cremasco, Viviana; Astarita, Jillian L; Grauel, Angelo L et al. (2018) FAP Delineates Heterogeneous and Functionally Divergent Stromal Cells in Immune-Excluded Breast Tumors. Cancer Immunol Res 6:1472-1485
Meyer Zu Horste, Gerd; Przybylski, Dariusz; Schramm, Markus A et al. (2018) Fas Promotes T Helper 17 Cell Differentiation and Inhibits T Helper 1 Cell Development by Binding and Sequestering Transcription Factor STAT1. Immunity 48:556-569.e7
Gee, Marvin H; Sibener, Leah V; Birnbaum, Michael E et al. (2018) Stress-testing the relationship between T cell receptor/peptide-MHC affinity and cross-reactivity using peptide velcro. Proc Natl Acad Sci U S A 115:E7369-E7378
Kim, Yong Chan; Zhang, Ai-Hong; Yoon, Jeongheon et al. (2018) Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J Autoimmun 92:77-86
Lucca, Liliana E; Hafler, David A (2017) Resisting fatal attraction: a glioma oncometabolite prevents CD8+ T cell recruitment. J Clin Invest 127:1218-1220
Nylander, Alyssa N; Ponath, Gerald D; Axisa, Pierre-Paul et al. (2017) Podoplanin is a negative regulator of Th17 inflammation. JCI Insight 2:
Gierahn, Todd M; Wadsworth 2nd, Marc H; Hughes, Travis K et al. (2017) Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 14:395-398

Showing the most recent 10 out of 129 publications