It is well established that leukocyte infiltration of the central nervous system (CNS) is a critical early step in the development of the demyelinating autoimmune disease, multiple sclerosis (MS) however the mechanistic details of this process remain poorly understood. Blocking leukocyte infiltration and destruction of the CNS in a targeted manner remains a significant clinical challenge. The long-term objectives are to develop therapeutics that restore immune tolerance and control autoimmune-mediated destruction of target organs. The obiective of this proposal is to define how stromal cells regulate autoimmune inflammation of the CNS. Stromal cells create inflammatory microenvironments, attract T cells and antigen presenting cells (APCs) into the CNS, create three-dimensional reticular structures that infiltrating leukocytes crawl on, and produce proinflammatory cytokines through interactions with Th17 cells. Moreover, stromal cells can function as APCs and regulate the function of activated T cells in close proximity. The central hvpothesis is that a stromal cell network is essential for the formation of chronic inflammatory lesions in MS. This hypothesis is based on emerging evidence from the literature and preliminary data generated in the applicants'laboratories. The rationale for the proposed research is that elucidating the mechanisms by which stromal cells interact with T cells and APCs at the blood brain barrier and in the CNS parenchyma may illuminate mechanistic insight into this pathogenic process.
Two specific aims will be carried out to test this hypothesis: 1) Define the role of PDPN expression by stromal, cells in leukocyte infiltration of the CNS. and 2) Elucidate the impact of stromal cell-leukocyte cross-talk in the inflamed CNS. As part of the first aim, human brain tissue from MS patients and healthy subjects will be studied to evaluate the interactions between leukocytes and PDPN-expressing stromal cells in lesions. In addition, novel conditional knockout mice will be used to evaluate whether PDPN expression by stromal cells and CLEC-2 expression by dendritic ceils and B ceils affects leukocytic infiltration of the CNS during EAE. In the second aim the impact of autoimmune tissue inflammation on stromal cell interactions with T cells and APCs will be evaluated. Furthermore, the mechanism by which the inflammatory milieu converts FRCs from immunosuppressive to proinflammatory cells will be interrogated. The proposed research is innovative because the contribution of stromal cells to the pathogenesis of MS is an understudied field and the role ofthe PDPN-CLEC-2 axis in leukocyte infiltration of inflamed tissues has not been previously addressed. The study is significant because elucidation ofthe mechanisms by which stromal cells influence APC and T cell function may offer new opportunities for intervention.

Public Health Relevance

Stromal cells create inflammatory microenvironments, attract T cells and antigen presenting cells (APCs) into the central nervous system, create three-dimensional reticular structures that infiltrating leukocytes crawl on, and produce proinflammatory cytokines through interactions with Thi 7 cells. Moreover, stromal cells can function as APCs and regulate the function of activated T cells in close proximity. The contribution of stromal cells to the pathogenesis of multiple sclerosis is an understudied field, and elucidation of the mechanisms by which they interact with APCs and T cells may offer new opportunities for intervention.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI045757-16
Application #
8705346
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
16
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02215
Urso, Katia; Alvarez, David; Cremasco, Viviana et al. (2016) IL4RA on lymphatic endothelial cells promotes T cell egress during sclerodermatous graft versus host disease. JCI Insight 1:
Adams, Jarrett J; Narayanan, Samanthi; Birnbaum, Michael E et al. (2016) Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR-peptide-MHC cross-reactivity. Nat Immunol 17:87-94
Longbrake, Erin E; Hafler, David A (2016) Linking Genotype to Clinical Phenotype in Multiple Sclerosis: In Search of the Holy Grail. JAMA Neurol 73:777-8
Singer, Meromit; Wang, Chao; Cong, Le et al. (2016) A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells. Cell 166:1500-1511.e9
Fernandez-Carbonell, Cristina; Vargas-Lowy, David; Musallam, Alexander et al. (2016) Clinical and MRI phenotype of children with MOG antibodies. Mult Scler 22:174-84
Cao, Yonghao; Nylander, Alyssa; Ramanan, Sriram et al. (2016) CNS demyelination and enhanced myelin-reactive responses after ipilimumab treatment. Neurology 86:1553-6
Axisa, Pierre-Paul; Hafler, David A (2016) Multiple sclerosis: genetics, biomarkers, treatments. Curr Opin Neurol 29:345-53
Lowther, Daniel E; Goods, Brittany A; Lucca, Liliana E et al. (2016) PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight 1:
Chastre, Anne; Hafler, David A; O'Connor, Kevin C (2016) Evaluation of KIR4.1 as an Immune Target in Multiple Sclerosis. N Engl J Med 374:1495-6
Astarita, Jillian L; Cremasco, Viviana; Fu, Jianxin et al. (2015) The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat Immunol 16:75-84

Showing the most recent 10 out of 117 publications