The overall goal of the Program Project structure is to provide an environment that fosters detailed, multi- disciplinary characterizafion of the development of virus-specific and cross-reactive (XR) CDS+ T cells, using the Epstein Barr virus (EBV) model of human infecfion. Each project in this Program Project is interdependent with regard to expertise, resources, and experimental design and requires access to high- quality clinical specimens and similar technologies. Core A will provide the necessary scientific leadership (including Internal and External Advisory Boards) and administrative and fiscal support to facilitate these mulfi-disciplinary, collaborafive studies. These multidisciplinary studies will result in large and diverse data sets;experts in bioinformafics and biostafistics will not only assist in the development of an integrated database but will also help develop and apply appropriate analytical approaches. In the absence of a suitable animal model, human studies are essenfial. The University of Massachusetts Amherst (UMA) Health Services Acute Infecfious Mononucleosis (AIM) Clinic provides essential clinical samples and constitutes one of a very few longitudinal AIM cohorts in the worid. Over the years, we have altered clinical visit and sample collection schedules to address evolving scienfific quesfions. While the AIM Clinic remains the main source of our clinical samples, the newly created UMA EBV Serosurveillance Cohort will allow us to obtain updated estimates of EBV seroposifivity and seroconversion in college students. Work conducted over the past funding period has identified high frequencies of influenza and EBV XR CD8+ T cells in the circulafion of a small group of individuals who remain EBV uninfected into their third decade of life and beyond. This has led to a novel hypothesis (i.e., that high frequencies of these cross-reactive CDS+ T cells might protect against EBV infecfion) and organizafion of a new cohort (EBV Seronegative;EBV-SN) that will be recruited to address this new hypothesis in the next funding period.

Public Health Relevance

The proposed studies will invesfigate factors that control the evolution of human anfiviral CD8+ T cell responses from the acute effector phase into long-term memory and how anfigen-specific or cross-reactive CD8+ T cells contribute to viral control or disease. We hope that they will inform the development of antiviral vaccines that afford long-term protecfion against infection or disease, while minimizing potential adverse effects. By providing scientific leadership, administrative and fiscal support, an integrated database/data analysis, and unique clinical samples. Core A is essenfial to the Program Project's overall success.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-PA-I (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Massachusetts Medical School Worcester
United States
Zip Code
Gil, Anna; Kenney, Laurie L; Mishra, Rabinarayan et al. (2015) Vaccination and heterologous immunity: educating the immune system. Trans R Soc Trop Med Hyg 109:62-9
Gil, Anna; Yassai, Maryam B; Naumov, Yuri N et al. (2015) Narrowing of human influenza A virus-specific T cell receptor α and β repertoires with increasing age. J Virol 89:4102-16
Greenough, Thomas C; Straubhaar, Juerg R; Kamga, Larisa et al. (2015) A Gene Expression Signature That Correlates with CD8+ T Cell Expansion in Acute EBV Infection. J Immunol 195:4185-97
Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank et al. (2014) Epstein-Barr virus latent membrane protein 1 genetic variability in peripheral blood B cells and oropharyngeal fluids. J Virol 88:3744-55
Chen, Alex T; Cornberg, Markus; Gras, Stephanie et al. (2012) Loss of anti-viral immunity by infection with a virus encoding a cross-reactive pathogenic epitope. PLoS Pathog 8:e1002633
Tracy, Sean I; Kakalacheva, Kristina; Lunemann, Jan D et al. (2012) Persistence of Epstein-Barr virus in self-reactive memory B cells. J Virol 86:12330-40
O'Bryan, Joel M; Potts, James A; Bonkovsky, Herbert L et al. (2011) Extended interferon-alpha therapy accelerates telomere length loss in human peripheral blood T lymphocytes. PLoS One 6:e20922
Selin, Liisa K; Wlodarczyk, Myriam F; Kraft, Anke R et al. (2011) Heterologous immunity: immunopathology, autoimmunity and protection during viral infections. Autoimmunity 44:328-47
Welsh, Raymond M; Che, Jenny W; Brehm, Michael A et al. (2010) Heterologous immunity between viruses. Immunol Rev 235:244-66
Greenough, Thomas C; Campellone, Shalyn C; Brody, Robin et al. (2010) Programmed Death-1 expression on Epstein Barr virus specific CD8+ T cells varies by stage of infection, epitope specificity, and T-cell receptor usage. PLoS One 5:e12926

Showing the most recent 10 out of 33 publications