Project 3: Sulfs and Wound Repair in Mucosal Epithelium Mucosal epithelia covering the respiratory tract and cornea are vulnerable sites for the entry of pathogens and noxious substances. Upon injury, these epithelia must be rapidly repaired to restore function and to limit infection. Our work will focus on two novel sulfatases, known as Sulf-1 and Sulf-2, which we have cloned and characterized in human and mouse. The Sulfs are extracellular endosulfatases, which act on heparan sulfate proteoglycans (HSPGs). HSPGs influence a huge variety of processes by binding to a multiplicity of signaling molecules such as chemokines, growth factors, and morphogens (e.g., Wnts). The Sulfs """"""""edit"""""""" the sulfation status of HSPGs by selectively removing the 6-O-S from glucosamine within HS chains. In so doing, the Sulfs modulate HSPG-ligand interactions and regulate signaling events and infection. The Sulfs promote Wnt signaling in development and cancer. Since Wnt signaling is also involved in epithelial wound responses, we have investigated the role of the Sulfs in the repair of mucosal epithelia. Our studies reveal that Sulf is expressed in lung type II alveolar epithelial cells (AT-II), which are critical in the the reepithelialization of injured alveolar walls. Moreover, Sulf regulates Wnt signaling and cell growth of an alveolar epithelial cell line. We will investigate the involvement of Sulfs in the repair of scratched monolayers of cultured alveolar cells, as a model of acute lung injury. Our second focus will be wound repair of corneal epithelium. Here, we found that Sulf is dramatically upregulated upon scratching of mouse cornea. In a cell culture model of human corneal epithelial cells, Sulf is required for repair of scratched monolayers. Our proposed studies of wound repair of alveolar epithelium and corneal epithelium will take advantage of established and novel methods for inhibiting the activity and expression of the Sulfs, including RNAi, antibodies, a small molecule inhibitor of the Sulfs, and Sulf null mice (single and double). We hypothesize that the Sulfs are pivotal in epithelial repair processes, by promoting Wnt-dependent cell growth and cell migration. By understanding the roles of Sulfs in the repair of distal airways and cornea, new methods for enhancing wound repair of these highly vulnerable mucosal epithelia may emerge. Projects 1, 2, and 4 will investigate related aspects of the Sulfs. We will extensively colloborate with them and Cores B and C.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI053194-10
Application #
8380436
Study Section
Special Emphasis Panel (ZAI1-IPG-I)
Project Start
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2014-08-31
Support Year
10
Fiscal Year
2012
Total Cost
$250,485
Indirect Cost
$88,359
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Singer, Mark S; Phillips, Joanna J; Lemjabbar-Alaoui, Hassan et al. (2015) SULF2, a heparan sulfate endosulfatase, is present in the blood of healthy individuals and increases in cirrhosis. Clin Chim Acta 440:72-8
Plaks, Vicki; Boldajipour, Bijan; Linnemann, Jelena R et al. (2015) Adaptive Immune Regulation of Mammary Postnatal Organogenesis. Dev Cell 34:493-504
Casbon, Amy-Jo; Reynaud, Damien; Park, Chanhyuk et al. (2015) Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci U S A 112:E566-75
Kwon, Sang-Ho; Liu, Kathleen D; Mostov, Keith E (2014) Intercellular transfer of GPRC5B via exosomes drives HGF-mediated outward growth. Curr Biol 24:199-204
Bucior, Iwona; Tran, Cindy; Engel, Joanne (2014) Assessing Pseudomonas virulence using host cells. Methods Mol Biol 1149:741-55
Bonnans, Caroline; Lohela, Marja; Werb, Zena (2014) Real-time imaging of myeloid cells dynamics in ApcMin/+ intestinal tumors by spinning disk confocal microscopy. J Vis Exp :e51916
Tran, Cindy S; Eran, Yoni; Ruch, Travis R et al. (2014) Host cell polarity proteins participate in innate immunity to Pseudomonas aeruginosa infection. Cell Host Microbe 15:636-43
Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M et al. (2013) Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures. J Cell Biol 203:359-72
Kim, J H; Chan, C; Elwell, C et al. (2013) Endosulfatases SULF1 and SULF2 limit Chlamydia muridarum infection. Cell Microbiol 15:1560-71
Maltseva, Inna; Chan, Matilda; Kalus, Ina et al. (2013) The SULFs, extracellular sulfatases for heparan sulfate, promote the migration of corneal epithelial cells during wound repair. PLoS One 8:e69642

Showing the most recent 10 out of 79 publications