The Fluorescence Microscopy Core will provide essential services and technical expertise to each of the projects in the Program. Importantly, the core will also provide training to students, postdoctoral fellows and Pis in state-of-the-art techniques in imaging. Many of the ongoing and proposed studies are integrally related to the technology available through this core. Confocal fluorescence microscopy is a valuable resource to this program and the expertise of the core Co-Leaders Drs. Ann Cowan and Kamal Khanna in this area is extensive. The recent acquisition of a dual laser two-photon Prairie microscopy system adds an exciting new dimension to the Program. This equipment will allow us to observe imunological events in real time either using tissue explants or intravital microscopy in living animals. Services provided by the core will also include access to expertise in experimental design, image analysis and data interpretation for static and intravital fluorescence microscopy. The technology and expertise available through this important core will provide an additional common link between the projects to continue to promote the overall goals of the Program.

Public Health Relevance

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
2P01AI056172-08A1
Application #
8424018
Study Section
Special Emphasis Panel (ZAI1-PA-I (S1))
Project Start
2003-09-01
Project End
2018-04-30
Budget Start
2013-05-15
Budget End
2014-04-30
Support Year
8
Fiscal Year
2013
Total Cost
$169,488
Indirect Cost
$49,958
Name
University of Connecticut
Department
Type
DUNS #
022254226
City
Farmington
State
CT
Country
United States
Zip Code
06030
Tsurutani, Naomi; Mittal, Payal; St Rose, Marie-Clare et al. (2016) Costimulation Endows Immunotherapeutic CD8 T Cells with IL-36 Responsiveness during Aerobic Glycolysis. J Immunol 196:124-34
Song, Jeongmin; Wilhelm, Cara L; Wangdi, Tamding et al. (2016) Absence of TLR11 in Mice Does Not Confer Susceptibility to Salmonella Typhi. Cell 164:827-8
Benoun, Joseph M; Labuda, Jasmine C; McSorley, Stephen J (2016) Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory. MBio 7:
Svedova, Julia; Tsurutani, Naomi; Liu, Wenhai et al. (2016) TNF and CD28 Signaling Play Unique but Complementary Roles in the Systemic Recruitment of Innate Immune Cells after Staphylococcus aureus Enterotoxin A Inhalation. J Immunol 196:4510-21
Romagnoli, Pablo A; Sheridan, Brian S; Pham, Quynh-Mai et al. (2016) IL-17A-producing resident memory γδ T cells orchestrate the innate immune response to secondary oral Listeria monocytogenes infection. Proc Natl Acad Sci U S A 113:8502-7
Cauley, Linda S (2016) Environmental cues orchestrate regional immune surveillance and protection by pulmonary CTLs. J Leukoc Biol 100:905-912
Romagnoli, P A; Fu, H H; Qiu, Z et al. (2016) Differentiation of distinct long-lived memory CD4 T cells in intestinal tissues after oral Listeria monocytogenes infection. Mucosal Immunol :
Cauley, Linda S; Vella, Anthony T (2015) Why is coinfection with influenza virus and bacteria so difficult to control? Discov Med 19:33-40
Colpitts, Sara L; Puddington, Lynn; Lefrançois, Leo (2015) IL-15 receptor α signaling constrains the development of IL-17-producing γδ T cells. Proc Natl Acad Sci U S A 112:9692-7
Pham, Oanh H; McSorley, Stephen J (2015) Protective host immune responses to Salmonella infection. Future Microbiol 10:101-10

Showing the most recent 10 out of 76 publications