The Fluorescence Microscopy Core will provide essential services and technical expertise to each of the projects in the Program. Importantly, the core will also provide training to students, postdoctoral fellows and Pis in state-of-the-art techniques in imaging. Many of the ongoing and proposed studies are integrally related to the technology available through this core. Confocal fluorescence microscopy is a valuable resource to this program and the expertise of the core Co-Leaders Drs. Ann Cowan and Kamal Khanna in this area is extensive. The recent acquisition of a dual laser two-photon Prairie microscopy system adds an exciting new dimension to the Program. This equipment will allow us to observe imunological events in real time either using tissue explants or intravital microscopy in living animals. Services provided by the core will also include access to expertise in experimental design, image analysis and data interpretation for static and intravital fluorescence microscopy. The technology and expertise available through this important core will provide an additional common link between the projects to continue to promote the overall goals of the Program.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-PA-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Connecticut
United States
Zip Code
Atif, Shaikh M; Lee, Seung-Joo; Li, Lin-Xi et al. (2015) Rapid CD4+ T-cell responses to bacterial flagellin require dendritic cell expression of Syk and CARD9. Eur J Immunol 45:513-24
Nanton, Minelva R; Lee, Seung-Joo; Atif, Shaikh M et al. (2015) Direct visualization of endogenous Salmonella-specific B cells reveals a marked delay in clonal expansion and germinal center development. Eur J Immunol 45:428-41
O'Donnell, Hope; Pham, Oanh H; Li, Lin-xi et al. (2014) Toll-like receptor and inflammasome signals converge to amplify the innate bactericidal capacity of T helper 1 cells. Immunity 40:213-24
McSorley, Stephen J (2014) Immunity to intestinal pathogens: lessons learned from Salmonella. Immunol Rev 260:168-82
Sheridan, Brian S; Pham, Quynh-Mai; Lee, Young-Tae et al. (2014) Oral infection drives a distinct population of intestinal resident memory CD8(+) T cells with enhanced protective function. Immunity 40:747-57
Wu, Tao; Hu, Yinghong; Lee, Young-Tae et al. (2014) Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol 95:215-24
Kumar, S; Colpitts, S L; Menoret, A et al. (2013) Rapid ** T-cell responses orchestrate innate immunity in response to Staphylococcal enterotoxin A. Mucosal Immunol 6:1006-15
Wright, Kyle T; Vella, Anthony T (2013) RKIP contributes to IFN-? synthesis by CD8+ T cells after serial TCR triggering in systemic inflammatory response syndrome. J Immunol 191:708-16
Blair, David A; Turner, Damian L; Bose, Tina O et al. (2011) Duration of antigen availability influences the expansion and memory differentiation of T cells. J Immunol 187:2310-21
Griffin, A J; McSorley, S J (2011) Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda. Mucosal Immunol 4:371-82

Showing the most recent 10 out of 46 publications