Anti-microbial T cell responses play a major role in determining the outcome of infection. Chronic infections are often distinguished by T cell responses that are not able to fully eliminate the pathogen. The mechanisms that explain this failure of T cell effector responses are only beginning to be understood. The regulation of T cell responses to infection reflects a delicate balance between effector functions needed to eliminate the microbe and the potential to cause immunopathology. Regulating the immune response to avoid tissue damage may be particularly important in the setting of chronic infection. During the current funding period, we have used the lymphocytic choriomeningitis virus (LCMV) model to investigate how inhibitory pathways in the B7:CD28 family regulate T cell responses during chronic infection. Our studies indicate that PD-1 and its ligands, PD-L1 and PD-L2, contribute directly to T cell exhaustion and lack of viral control during chronic LCMV infection. In vivo blockade of PD-1 :PD-L1 interactions in chronically infected mice restores T cell function and leads to a substantial reduction in virus levels. Thus, these studies identify a specific mechanism of T cell exhaustion, and suggest that blockade of this pathway may provide a new therapeutic approach for chronic infections. Further studies are needed to determine how to best modulate PD-1 and its ligands to activate anti-viral T cells while minimizing the risk of immunopathology and autoimmunity, since PD-1 and its ligands also have key roles in regulating tolerance. The discovery of the PD-L1:B7-1 pathway leads us to ask whether PD-L1:PD-1 and PD-L1:B7-1 interactions have unique or overlapping roles in controlling chronic infection, T cell exhaustion, and immunopathology. Our main hypothesis is that the newly discovered PD-L1:B7-1 pathway, as well as PD-L1:PD-1 and PD-L2:PD-1 interactions, regulate virus-specific T cell responses and viral control during chronic infection. PD-L1 may trigger more profound inhibitory effects than PD-1 because PD-L1 has the potential to trigger two inhibitory interactions. To test this hypothesis, our Specific Aims are to: 1) Analyze the functional significance of the newly defined PD-L1:B7-1 pathway, and the relative contributions of the PD-L1:B7-1 and PD-L1:PD-1 pathways in controlling the balance between virus-specific immunity and immunopathology. 2) Analyze the role ofPD-L1 on specific cell types in regulating Tee// responses, viral clearance and immunopathology, and 3) Determine how PD-L2 controls the balance between viral immunity and immunopathology. Our goal is to determine the best therapeutic modality for enhancing viral clearance while minimizing immunopathology.

Public Health Relevance

These studies will provide new insights into how, where and when PD-1, PD-L1 and PD-L2 regulate chronic viral infection, and how to effectively manipulate them to control chronic infection while minimizing the risk of autoimmunity and immunopathology. The results of our studies will have implications for developing new therapies for human chronic viral infections, cancer, autoimmune diseases and increasing success of transplantation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI056299-09
Application #
8379891
Study Section
Special Emphasis Panel (ZAI1-RJ-I)
Project Start
Project End
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
9
Fiscal Year
2012
Total Cost
$491,178
Indirect Cost
$81,821
Name
Harvard University
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Owen, David L; Mahmud, Shawn A; Vang, Kieng B et al. (2018) Identification of Cellular Sources of IL-2 Needed for Regulatory T Cell Development and Homeostasis. J Immunol 200:3926-3933
Prestipino, Alessandro; Emhardt, Alica J; Aumann, Konrad et al. (2018) Oncogenic JAK2V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med 10:
Du, Jing; Flynn, Ryan; Paz, Katelyn et al. (2018) Murine chronic graft-versus-host disease proteome profiling discovers CCL15 as a novel biomarker in patients. Blood 131:1743-1754
Zeiser, Robert; Sarantopoulos, Stefanie; Blazar, Bruce R (2018) B-cell targeting in chronic graft-versus-host disease. Blood 131:1399-1405
Blazar, Bruce R; MacDonald, Kelli P A; Hill, Geoffrey R (2018) Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood 131:2651-2660
Chihara, Norio; Madi, Asaf; Kondo, Takaaki et al. (2018) Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature 558:454-459
Sage, Peter T; Schildberg, Frank A; Sobel, Raymond A et al. (2018) Dendritic Cell PD-L1 Limits Autoimmunity and Follicular T Cell Differentiation and Function. J Immunol 200:2592-2602
Lu, Yunjie; Gao, Ji; Zhang, Shaopeng et al. (2018) miR-142-3p regulates autophagy by targeting ATG16L1 in thymic-derived regulatory T cell (tTreg). Cell Death Dis 9:290
Dixon, Karen O; Schorer, Michelle; Nevin, James et al. (2018) Functional Anti-TIGIT Antibodies Regulate Development of Autoimmunity and Antitumor Immunity. J Immunol 200:3000-3007
Fan, Martin Y; Turka, Laurence A (2018) Immunometabolism and PI(3)K Signaling As a Link between IL-2, Foxp3 Expression, and Suppressor Function in Regulatory T Cells. Front Immunol 9:69

Showing the most recent 10 out of 332 publications