Costimulatory receptors and their ligands have a profound impact on autoimmune diseases by regulating the balance between pathogenic (Th1 and Th17) and CD4+.CD25+, Fox-P3+ T-reg cells. We recently proposed that there is a reciprocal relationship between Treg and Th17 cells phenotypes and their transcriptional factors that control the generation of pathogenic and regulatory T cells. TFGD supports FoxP3+CD4+ T cells, but IL-6 inhibits the generation of T-reg cells and induces Th17 cells instead. IL-23 produced by activated antigen presenting cells further strengthens the reciprocal dichotomy in terms of suppressing the Fox-P3 induction and enhancing Th17 response. Therefore, APCs present in the lymphoid organs or in target tissues play an important role in determining the balance between T cell phenotypes, via their production of cytokines and the costimulatory molecules that they express. We hypothesize that costimulatory molecules and the receptors influence the generation of pathogenic and regulatory T cells and thus regulate development of autoimmune disease. We propose these specific aims to address this hypothesis: 1.Study the role of costimulatory receptors (CTLA4, ICOS or PD1) in the induction and differentiation of regulatory (CD4+, FoxP3+ Treg) and effector (Th1 and Th17 cells) in vitro and in the induction and regulation of EAE and diabetes in vivo. Experiments in this aim will combine transgenic TCRs, tetramer reagents to specifically track T cells with an autoimmune specificity, fluorescent reporters mice that will allow us to follow the in vivo phenotype of differentiating effector and regulatory T cells. 2. In parallel experiments to aim 1, we will study the impact of costimulatory molecules expressed on the APCs in the differentiation of regulatory and pathogenic effector T cells in vitro and in vivo. The effect of loss or blockade of the costimulatory molecules on APCs function will be tested by analyzing the changes in the expression of cell surface molecules and cytokines that the APCs and stromal cells produce and thus influence T cell differentiation and development of EAE and diabetes. 3. Assess in depth the phenotypic variation by genomic profiling in aggressive and regulatory populations present in the target organ during development of EAE and diabetes. Our preliminary data suggests that progression of disease is not simply due to lower frequencies of Treg cells, but that both effector and regulatory T cells in the target tissue change in response to inflammatory and costimulatory cues. Using the expression profiling we will determine the changes in the T-reg and T-effector populations present in the target tissue and how these cells change during costimulatory blockade. The experiments presented here, will address the role of costimulatory molecules and their receptors in regulating the balance of pathogenic and regulatory T cells in the lymphoid tissue and the target organ.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI056299-10
Application #
8712936
Study Section
Special Emphasis Panel (ZAI1-RJ-I (J1))
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
10
Fiscal Year
2013
Total Cost
$493,420
Indirect Cost
$80,437
Name
Harvard University
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Xu, Jie; Sun, Heather H; Fletcher, Christopher D M et al. (2016) Expression of Programmed Cell Death 1 Ligands (PD-L1 and PD-L2) in Histiocytic and Dendritic Cell Disorders. Am J Surg Pathol 40:443-53
Borges, Christopher M; Reichenbach, Dawn K; Kim, Beom Seok et al. (2016) Regulatory T cell expressed MyD88 is critical for prolongation of allograft survival. Transpl Int 29:930-40
Chapuy, Bjoern; Roemer, Margaretha G M; Stewart, Chip et al. (2016) Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 127:869-81
Schildberg, Frank A; Klein, Sarah R; Freeman, Gordon J et al. (2016) Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity 44:955-72
Schönle, Anne; Hartl, Frederike A; Mentzel, Jan et al. (2016) Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells. Blood 127:1930-9
Flynn, Ryan; Paz, Katelyn; Du, Jing et al. (2016) Targeted Rho-associated kinase 2 inhibition suppresses murine and human chronic GVHD through a Stat3-dependent mechanism. Blood 127:2144-54
Zeiser, Robert; Blazar, Bruce R (2016) Preclinical models of acute and chronic graft-versus-host disease: how predictive are they for a successful clinical translation? Blood 127:3117-26
Hirakawa, Masahiro; Matos, Tiago; Liu, Hongye et al. (2016) Low-dose IL-2 selectively activates subsets of CD4(+) Tregs and NK cells. JCI Insight 1:e89278
Li, Wei; Liu, Liangyi; Gomez, Aurelie et al. (2016) Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease. JCI Insight 1:
Lo, Tsun-Ho; Silveira, Pablo A; Fromm, Phillip D et al. (2016) Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol 197:885-98

Showing the most recent 10 out of 257 publications