Core B, the Antibody / Ig Fusion Core, provides an important means by which the PPG will achieve its goals of understanding the immune response in tolerance, autoimmunity and infection. Core B will coordinate the use of mAb and Ig fusion proteins to enable the study of the roles of the PD-1 and other coinhibitory pathways in regulating immune responses during acute and chronic infection, chronic graft versus host disease (cGVHD), and autoimmunity. To achieve these goals Core B has the following aims:
Aim 1 : To maintain and produce existing and newly generated mAbs and Ig fusion proteins for PPG investigators. An extensive set of mAbs and fusion proteins against coinhibitory molecules has been generated in the first cycle of this PPG and these will continue to be produced as well as characterized for additional activities.
Aim 2 : To generate novel monoclonal antibodies and Ig fusion proteins to study the function and expression of coinhibitory receptors and ligands. RGMb and PROCR are newly identified co-inhibitory molecules that impact T cell exhaustion and the PD-1 pathway. Core B will generate novel antibodies that will facilitate analysis of the function and expression of coinhibitory molecules particularly PD-1/PD-L, RGMb, and PROCR pathway members as well as other coinhibitory pathways. These include novel mouse anti-mouse antibodies made in knockout mice that see novel epitopes including anti-PD-1, PD-L1, PD-L2 for long-term treatment of mice without anti-antibody responses. These novel mouse anti-mouse mAbs will also be made as recombinant mAbs with mutated Fc to eliminate effects due to cell depletion or FcR signaling. This best models PD-1 mAbs used in clinical trials. Core B will generate novel multimeric Ig fusion proteins of these coinhibitory pathway proteins in order to either block or transduce signals via cross-linking receptors. The production of these critical reagents by a core not only will be time and cost efficient, but also provide standardized reagents that will facilitate comparison of data by investigators in this PPG. Core B will work closely with all PPG investigators, providing mAbs and Ig fusion proteins and identifying new needs. These reagents will allow PPG investigators to develop a comprehensive understanding of the roles of positive and negative second signals in modulating T cell activation, tolerance and exhaustion. The production of these critical reagents by a core not only will be time and cost efficient, but also provide standardized reagents that will facilitate comparison of data by investigators in this PPG.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
2P01AI056299-11
Application #
8742089
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
11
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Harvard Medical School
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02215
Xu, Jie; Sun, Heather H; Fletcher, Christopher D M et al. (2016) Expression of Programmed Cell Death 1 Ligands (PD-L1 and PD-L2) in Histiocytic and Dendritic Cell Disorders. Am J Surg Pathol 40:443-53
Borges, Christopher M; Reichenbach, Dawn K; Kim, Beom Seok et al. (2016) Regulatory T cell expressed MyD88 is critical for prolongation of allograft survival. Transpl Int 29:930-40
Chapuy, Bjoern; Roemer, Margaretha G M; Stewart, Chip et al. (2016) Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 127:869-81
Schildberg, Frank A; Klein, Sarah R; Freeman, Gordon J et al. (2016) Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity 44:955-72
Schönle, Anne; Hartl, Frederike A; Mentzel, Jan et al. (2016) Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells. Blood 127:1930-9
Flynn, Ryan; Paz, Katelyn; Du, Jing et al. (2016) Targeted Rho-associated kinase 2 inhibition suppresses murine and human chronic GVHD through a Stat3-dependent mechanism. Blood 127:2144-54
Zeiser, Robert; Blazar, Bruce R (2016) Preclinical models of acute and chronic graft-versus-host disease: how predictive are they for a successful clinical translation? Blood 127:3117-26
Hirakawa, Masahiro; Matos, Tiago; Liu, Hongye et al. (2016) Low-dose IL-2 selectively activates subsets of CD4(+) Tregs and NK cells. JCI Insight 1:e89278
Li, Wei; Liu, Liangyi; Gomez, Aurelie et al. (2016) Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease. JCI Insight 1:
Lo, Tsun-Ho; Silveira, Pablo A; Fromm, Phillip D et al. (2016) Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol 197:885-98

Showing the most recent 10 out of 257 publications