Central to the efforts of our Select Agent research program is the ABSL3/BSL3/NIHBL3 facility. The purpose of the ABSL3/BSL3/NIHBL3 core (Core B) is to provide a high quality, uniform source of Francisella tularensis (Ft), avoid duplication of work, and provide a shared resource for all investigators. The rationale is that a centralized facility run by trained technicians will be best able to consistently generate reliable reagents for all components of the Program Project. The primary objectives of Core B are to ensure proper maintenance and supply of bacterial stocks;to provide ABSL3 animal husbandry and maintenance of the ABSL3/BSL3/NIHBL3 facility;and to provide training and oversight to individuals working in the suite. To achieve these goals, Core B will: 1. Maintain Ft SchuS4 stock cultures. 2. Provide animal husbandry and BSL3 facility maintenance. 3. Provide training and oversight.

Public Health Relevance

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-LR-M (S1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albany Medical College
United States
Zip Code
Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda et al. (2016) An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia. PLoS Pathog 12:e1005517
Sunagar, Raju; Kumar, Sudeep; Franz, Brian J et al. (2016) Tularemia vaccine development: paralysis or progress? Vaccine (Auckl) 6:9-23
McCarthy, Donald A; Nazem, Ahmad A; McNeilan, James et al. (2016) Nanoenhanced matrix metalloproteinase-responsive delivery vehicles for disease resolution and imaging. Exp Biol Med (Maywood) :
Sunagar, Raju; Kumar, Sudeep; Franz, Brian J et al. (2016) Vaccination evokes gender-dependent protection against tularemia infection in C57BL/6Tac mice. Vaccine 34:3396-404
Rabadi, Seham M; Sanchez, Belkys C; Varanat, Mrudula et al. (2016) Antioxidant Defenses of Francisella tularensis Modulate Macrophage Function and Production of Proinflammatory Cytokines. J Biol Chem 291:5009-21
Duffy, Ellen B; Periasamy, Sivakumar; Hunt, Danielle et al. (2016) FcγR mediates TLR2- and Syk-dependent NLRP3 inflammasome activation by inactivated Francisella tularensis LVS immune complexes. J Leukoc Biol 100:1335-1347
Shakerley, Nicole L; Chandrasekaran, Akshaya; Trebak, Mohamed et al. (2016) Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity. J Biol Chem 291:3871-81
Franz, Brian J; Li, Ying; Bitsaktsis, Constantine et al. (2015) Downmodulation of vaccine-induced immunity and protection against the intracellular bacterium Francisella tularensis by the inhibitory receptor FcγRIIB. J Immunol Res 2015:840842
Bitsaktsis, Constantine; Babadjanova, Zulfia; Gosselin, Edmund J (2015) In vivo mechanisms involved in enhanced protection utilizing an Fc receptor-targeted mucosal vaccine platform in a bacterial vaccine and challenge model. Infect Immun 83:77-89
Suresh, Ragavan Varadharajan; Ma, Zhuo; Sunagar, Raju et al. (2015) Preclinical testing of a vaccine candidate against tularemia. PLoS One 10:e0124326

Showing the most recent 10 out of 57 publications