Central to the efforts of our Select Agent research program is the ABSL3/BSL3/NIHBL3 facility. The purpose of the ABSL3/BSL3/NIHBL3 core (Core B) is to provide a high quality, uniform source of Francisella tularensis (Ft), avoid duplication of work, and provide a shared resource for all investigators. The rationale is that a centralized facility run by trained technicians will be best able to consistently generate reliable reagents for all components of the Program Project. The primary objectives of Core B are to ensure proper maintenance and supply of bacterial stocks;to provide ABSL3 animal husbandry and maintenance of the ABSL3/BSL3/NIHBL3 facility;and to provide training and oversight to individuals working in the suite. To achieve these goals, Core B will: 1. Maintain Ft SchuS4 stock cultures. 2. Provide animal husbandry and BSL3 facility maintenance. 3. Provide training and oversight.

Public Health Relevance

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI056320-09
Application #
8698577
Study Section
Special Emphasis Panel (ZAI1-LR-M (S1))
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
9
Fiscal Year
2013
Total Cost
$277,858
Indirect Cost
$98,258
Name
Albany Medical College
Department
Type
DUNS #
190592162
City
Albany
State
NY
Country
United States
Zip Code
12208
Sunagar, Raju; Kumar, Sudeep; Rosa, Sarah J et al. (2018) Differential In Vitro Cultivation of Francisella tularensis Influences Live Vaccine Protective Efficacy by Altering the Immune Response. Front Immunol 9:1594
Nagar, Abhinit; DeMarco, Richard A; Harton, Jonathan A (2018) Inflammasome and Caspase-1 Activity Characterization and Evaluation: An Imaging Flow Cytometer-Based Detection and Assessment of Inflammasome Specks and Caspase-1 Activation. J Immunol :
Drake, James R (2018) The immunobiology of ubiquitin-dependent B cell receptor functions. Mol Immunol 101:146-154
Alqahtani, Maha; Ma, Zhuo; Ketkar, Harshada et al. (2018) Characterization of a Unique Outer Membrane Protein Required for Oxidative Stress Resistance and Virulence of Francisella tularensis. J Bacteriol 200:
Steiner, Donald J; Furuya, Yoichi; Metzger, Dennis W (2018) Detrimental Influence of Alveolar Macrophages on Protective Humoral Immunity during Francisella tularensis SchuS4 Pulmonary Infection. Infect Immun 86:
Chen, Fei; Cui, Guolin; Wang, Shuxia et al. (2017) Outer membrane vesicle-associated lipase FtlA enhances cellular invasion and virulence in Francisella tularensis LVS. Emerg Microbes Infect 6:e66
Periasamy, Sivakumar; Porter, Kristen A; Atianand, Maninjay K et al. (2017) Pyrin-only protein 2 limits inflammation but improves protection against bacteria. Nat Commun 8:15564
Furuya, Yoichi; Kirimanjeswara, Girish S; Roberts, Sean et al. (2017) Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice. Vaccine 35:4997-5005
Holland, Kristen M; Rosa, Sarah J; Kristjansdottir, Kolbrun et al. (2017) Differential Growth of Francisella tularensis, Which Alters Expression of Virulence Factors, Dominant Antigens, and Surface-Carbohydrate Synthases, Governs the Apparent Virulence of Ft SchuS4 to Immunized Animals. Front Microbiol 8:1158
Duffy, Ellen B; Periasamy, Sivakumar; Hunt, Danielle et al. (2016) Fc?R mediates TLR2- and Syk-dependent NLRP3 inflammasome activation by inactivated Francisella tularensis LVS immune complexes. J Leukoc Biol 100:1335-1347

Showing the most recent 10 out of 72 publications