Central to the efforts of our Select Agent research program is the ABSL3/BSL3/NIHBL3 facility. The purpose of the ABSL3/BSL3/NIHBL3 core (Core B) is to provide a high quality, uniform source of Francisella tularensis (Ft), avoid duplication of work, and provide a shared resource for all investigators. The rationale is that a centralized facility run by trained technicians will be best able to consistently generate reliable reagents for all components of the Program Project. The primary objectives of Core B are to ensure proper maintenance and supply of bacterial stocks;to provide ABSL3 animal husbandry and maintenance of the ABSL3/BSL3/NIHBL3 facility;and to provide training and oversight to individuals working in the suite. To achieve these goals, Core B will: 1. Maintain Ft SchuS4 stock cultures. 2. Provide animal husbandry and BSL3 facility maintenance. 3. Provide training and oversight.

Public Health Relevance

A Select Agent research program relays upon an appropriate containment facility in which to conduct experiments. Core B provides the indispensible ABSL3/BSL3/NIHBL3 facility and staff to support of our Program focused on understanding effective immune responses to type A strains of Francisella tularensis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI056320-10
Application #
8711177
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
10
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Albany Medical College
Department
Type
DUNS #
City
Albany
State
NY
Country
United States
Zip Code
12208
Sunagar, Raju; Kumar, Sudeep; Rosa, Sarah J et al. (2018) Differential In Vitro Cultivation of Francisella tularensis Influences Live Vaccine Protective Efficacy by Altering the Immune Response. Front Immunol 9:1594
Nagar, Abhinit; DeMarco, Richard A; Harton, Jonathan A (2018) Inflammasome and Caspase-1 Activity Characterization and Evaluation: An Imaging Flow Cytometer-Based Detection and Assessment of Inflammasome Specks and Caspase-1 Activation. J Immunol :
Drake, James R (2018) The immunobiology of ubiquitin-dependent B cell receptor functions. Mol Immunol 101:146-154
Alqahtani, Maha; Ma, Zhuo; Ketkar, Harshada et al. (2018) Characterization of a Unique Outer Membrane Protein Required for Oxidative Stress Resistance and Virulence of Francisella tularensis. J Bacteriol 200:
Steiner, Donald J; Furuya, Yoichi; Metzger, Dennis W (2018) Detrimental Influence of Alveolar Macrophages on Protective Humoral Immunity during Francisella tularensis SchuS4 Pulmonary Infection. Infect Immun 86:
Chen, Fei; Cui, Guolin; Wang, Shuxia et al. (2017) Outer membrane vesicle-associated lipase FtlA enhances cellular invasion and virulence in Francisella tularensis LVS. Emerg Microbes Infect 6:e66
Periasamy, Sivakumar; Porter, Kristen A; Atianand, Maninjay K et al. (2017) Pyrin-only protein 2 limits inflammation but improves protection against bacteria. Nat Commun 8:15564
Furuya, Yoichi; Kirimanjeswara, Girish S; Roberts, Sean et al. (2017) Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice. Vaccine 35:4997-5005
Holland, Kristen M; Rosa, Sarah J; Kristjansdottir, Kolbrun et al. (2017) Differential Growth of Francisella tularensis, Which Alters Expression of Virulence Factors, Dominant Antigens, and Surface-Carbohydrate Synthases, Governs the Apparent Virulence of Ft SchuS4 to Immunized Animals. Front Microbiol 8:1158
Ma, Zhuo; Russo, Vincenzo C; Rabadi, Seham M et al. (2016) Elucidation of a mechanism of oxidative stress regulation in Francisella tularensis live vaccine strain. Mol Microbiol 101:856-78

Showing the most recent 10 out of 72 publications