The Administrative Core will coordinate the activities of the Projects and Animal Core. It will be responsible for encouraging the exploration of new research directions and for arranging consultations with the Internal and External Advisory Committees. It will be responsible for preparing scientific progress reports and renewal applications. It will organize the monthly meetings of the Projects at which research progress is presented. It will be responsible for budget allocation and for monitoring expenses. It will allocate travel funds. Two of the projects of the PPG are located offsite, in Chicago and in Madrid, Spain. Thus, important functions of the Administrative Core will be to facilitate discussions between the Projects by arranging videoconferences between the lowa, Loyola and Madrid projects and to coordinate two meetings per year at the University of lowa of all of the Project Directors. In summary, the Administrative Core will have a critical role in making sure that the PPG is efficiently organized and is productive as possible.

Public Health Relevance

This Program Project Grant is concerned with understanding the pathogenesis of SARS and in developing new vaccines that would be useful if SARS were to recur. The Administrative Core will have an important role in guaranteeing success of the project and providing administrative support so that members of the projects can concentrate on their research.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI060699-07
Application #
8379137
Study Section
Special Emphasis Panel (ZAI1-EC-M)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
7
Fiscal Year
2012
Total Cost
$94,928
Indirect Cost
$22,107
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Channappanavar, Rudragouda; Fett, Craig; Mack, Matthias et al. (2017) Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection. J Immunol 198:4046-4053
Fehr, Anthony R; Channappanavar, Rudragouda; Perlman, Stanley (2017) Middle East Respiratory Syndrome: Emergence of a Pathogenic Human Coronavirus. Annu Rev Med 68:387-399
Park, Jung-Eun; Gallagher, Tom (2017) Lipidation increases antiviral activities of coronavirus fusion-inhibiting peptides. Virology 511:9-18
Zhao, Jingxian; Alshukairi, Abeer N; Baharoon, Salim A et al. (2017) Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses. Sci Immunol 2:
Chi, Hang; Zheng, Xuexing; Wang, Xiwen et al. (2017) DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice. Vaccine 35:2069-2075
Morales, Lucía; Oliveros, Juan Carlos; Fernandez-Delgado, Raúl et al. (2017) SARS-CoV-Encoded Small RNAs Contribute to Infection-Associated Lung Pathology. Cell Host Microbe 21:344-355
Li, Kun; Wohlford-Lenane, Christine L; Channappanavar, Rudragouda et al. (2017) Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc Natl Acad Sci U S A 114:E3119-E3128
Fehr, Anthony R; Jankevicius, Gytis; Ahel, Ivan et al. (2017) Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis. Trends Microbiol :
Tai, Wanbo; Wang, Yufei; Fett, Craig A et al. (2017) Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants. J Virol 91:
Zheng, Jian; Perlman, Stanley (2017) Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host. Curr Opin Virol 28:43-52

Showing the most recent 10 out of 100 publications