This proposal is Project 1 within a P01 renewal, entitled """"""""Intracellular pathogens and innate immunity."""""""" Listeria monocytogenes is a highly amenable model intracellular pathogen that induces robust and long-lived cell mediated immunity. The goal of the previous proposal was to identify L. monocytogenes determinants that activate a host cytosolic surveillance pathway (CSP) of innate immunity that leads to the expression of IFNB and co-regulated genes. We hypothesize that this pathway contributes significantly to the potent and long-lived cell-mediated immunity induced by L. monocytogenes. Using a genetic screen and subsequent biochemistry, we identified c-di-AMP as the listerial ligand that is secreted through a multidrug efflux pump and activates the CSP. Thus, c-di-AMP is a newly discovered PAMP. C-di-AMP is also a novel and conserved small bacterial signaling molecule that appears essential for bacterial growth. We have identified the di-adenylate cyclase (DacA) and c-di-AMP phosphodiesterase (Pde).
In Aim 1, we propose to further characterize the molecular determinants that lead to expression of c-di-AMP and generate a panel of well-characterized strains that express either enhanced or diminished levels of c-di-AMP. We will also address the following questions: What are the bacterial components that regulate c-di-AMP production? Does c-di- AMP act from the inside and/or the outside of bacteria? What is the physiologic role of c-di-AMP? In Aim 2, we will use the strains constructed above to determine the role of c-di-AMP during infection of macrophages and dendritic cells in vitro. We will also evaluate the effects of purified c-di-AMP on dendritic cell activation. In collaboration with the Vance Lab (Project 3), we will use ENU mutagenesis to identify novel host factors that control the CSP. In preliminary data, we identified Sting (Stimulator of interferon genes) as a critical host component necessary for response to L. monocytogenes, M. tuberculosis, and c-di-AMP. In the final Aim, we will test the hypothesis that c-di-AMP production is essential for the full expression of L. monocytogenes pathogenesis, and importantly, contributes to the induction of cell-mediated immunity. We will examine the role of c-di-AMP as an adjuvant.

Public Health Relevance

We recently discovered that the intracellular bacterial pathogen, Listeria monocytogenes, secretes a novel small di-cyclic molecule that is essential for bacterial growth and stimulates a robust host response leading to the production of interferon. These studies may impact the development of vaccines and therapeutics that protect against infectious disease agents.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-QV-I (M3))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Berkeley
United States
Zip Code
Roberts, Allison W; Lee, Bettina L; Deguine, Jacques et al. (2017) Tissue-Resident Macrophages Are Locally Programmed for Silent Clearance of Apoptotic Cells. Immunity 47:913-927.e6
Whiteley, Aaron T; Ruhland, Brittany R; Edrozo, Mauna B et al. (2017) A Redox-Responsive Transcription Factor Is Critical for Pathogenesis and Aerobic Growth of Listeria monocytogenes. Infect Immun 85:
Lobingier, Braden T; Hüttenhain, Ruth; Eichel, Kelsie et al. (2017) An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells. Cell 169:350-360.e12
Portman, Jonathan L; Huang, Qiongying; Reniere, Michelle L et al. (2017) Activity of the Pore-Forming Virulence Factor Listeriolysin O Is Reversibly Inhibited by Naturally Occurring S-Glutathionylation. Infect Immun 85:
Fu, Juan; Sen, Rupashree; Masica, David L et al. (2017) Autologous reconstitution of human cancer and immune system in vivo. Oncotarget 8:2053-2068
Barry, Kevin C; Ingolia, Nicholas T; Vance, Russell E (2017) Global analysis of gene expression reveals mRNA superinduction is required for the inducible immune response to a bacterial pathogen. Elife 6:
Tenthorey, Jeannette L; Haloupek, Nicole; López-Blanco, José Ramón et al. (2017) The structural basis of flagellin detection by NAIP5: A strategy to limit pathogen immune evasion. Science 358:888-893
Deguine, Jacques; Wei, Jessica; Barbalat, Roman et al. (2017) Local TNFR1 Signaling Licenses Murine Neutrophils for Increased TLR-Dependent Cytokine and Eicosanoid Production. J Immunol 198:2865-2875
Ekiert, Damian C; Bhabha, Gira; Isom, Georgia L et al. (2017) Architectures of Lipid Transport Systems for the Bacterial Outer Membrane. Cell 169:273-285.e17
Mitchell, Gabriel; Isberg, Ralph R (2017) Innate Immunity to Intracellular Pathogens: Balancing Microbial Elimination and Inflammation. Cell Host Microbe 22:166-175

Showing the most recent 10 out of 127 publications