While inflammation is a common component of many clinical disorders, the contributing factors can be distinct. In recent years, the complement system has been associated with a growing number of inflammatory conditions that include acute and chronic tissue inflammation, adverse reactions to biomaterials, and transplant rejection. It is evident that excessive or insufficiently controlled complement activation on host cells can cause an immune imbalance that, exacerbated by factors such as oxidative stress or infection, may fuel a vicious cycle between complement, inflammation, and tissue damage. As a consequence, therapeutic modulation of complement emerges as attractive target for upstream inhibition of inflammatory processes but requires profound understanding of underlying processes, identification of rewarding targets, and careful selection of suitable inhibitors. This Program Project therefore employs a highly integrated and holistic approach to describe common and distinct denominators of complement involvement in inflammatory conditions and open avenues for improved therapeutic strategies. For this purpose, three disease models that are representative of the wide spectrum of complement-mediated conditions and have high impact for health care and the clinic will be thoroughly investigated. Whereas inflammatory reactions to hemodialysis and kidney transplantation (Project 2) represent distinct disorders of complement activation by artificial and foreign surfaces and major complications in end-stage renal disease, periodontitis (Project 3) is an emerging and very attractive model of local tissue inflammation with a strong infectious component. Using relevant in vitro assays, sensitive instrumental methods (Core 6), and translational models in rodents and non-human primates, disease processes will be investigated in relation to complement triggers and activity, but also to associated pathways (e.g., TLR), effects on downstream inflammatory processes, and influences of modulating factors (e.g., oxidative damage, infection). A diverse panel of potent, validated, pathway-specific and/or targeted complement inhibitors will be generated (Project 1, Core B) that allows for the dissection of involved complement pathways and processes in each disease. This 'inhibitor toolbox'includes analogs of the central C3 inhibitor compstatin, which will serve as a benchmark compound, and entities acting at individual initiation, amplification, and effector pathways. Optimization of efficacy, pharmacokinetic, administration, and targeting properties will be guided by results and requirements of the disease models of Projects 2 &3. At the same time, the evaluation of promising and pre-validated inhibitor candidates in such relevant disease models is expected to allow rapid translation into therapeutic concepts. Established models, methods, and inhibitors of this P01 can easily be applied to future disease studies. Thus, this P01 will have a high impact on the elucidation and management of complement-related disease and benefit patients and the research community.

Public Health Relevance

The purpose of this study is to comprehensively elucidate the role of the complement system in inflammatory diseases and provide options for their therapeutic management. The generation and use of validated and pathway-specific inhibitors, highly relevant disease models, and sensitive analytical assays will ensure high translational value to the benefit of patients suffering from inflammatory and immune diseases.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-ESB-I (S1))
Program Officer
Palker, Thomas J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Schools of Dentistry
United States
Zip Code
Schmidt, Christoph Q; Harder, Markus J; Nichols, Eva-Maria et al. (2016) Selectivity of C3-opsonin targeted complement inhibitors: A distinct advantage in the protection of erythrocytes from paroxysmal nocturnal hemoglobinuria patients. Immunobiology 221:503-11
Blatt, Adam Z; Saggu, Gurpanna; Kulkarni, Koustubh V et al. (2016) Properdin-Mediated C5a Production Enhances Stable Binding of Platelets to Granulocytes in Human Whole Blood. J Immunol 196:4671-80
Mastellos, Dimitrios C; Reis, Edimara S; Yancopoulou, Despina et al. (2016) From orphan drugs to adopted therapies: Advancing C3-targeted intervention to the clinical stage. Immunobiology 221:1046-57
Hajishengallis, George; Lambris, John D (2016) More than complementing Tolls: complement-Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol Rev 274:233-244
Lindorfer, Margaret A; Cook, Erika M; Reis, Edimara S et al. (2016) Compstatin Cp40 blocks hematin-mediated deposition of C3b fragments on erythrocytes: Implications for treatment of malarial anemia. Clin Immunol 171:32-35
Maekawa, Tomoki; Briones, Ruel A; Resuello, Ranillo R G et al. (2016) Inhibition of pre-existing natural periodontitis in non-human primates by a locally administered peptide inhibitor of complement C3. J Clin Periodontol 43:238-49
Hajishengallis, George; Hajishengallis, Evlambia; Kajikawa, Tetsuhiro et al. (2016) Complement inhibition in pre-clinical models of periodontitis and prospects for clinical application. Semin Immunol 28:285-91
Ricklin, Daniel; Reis, Edimara S; Lambris, John D (2016) Complement in disease: a defence system turning offensive. Nat Rev Nephrol 12:383-401
Hajishengallis, George; Moutsopoulos, Niki M (2016) Role of bacteria in leukocyte adhesion deficiency-associated periodontitis. Microb Pathog 94:21-6
Wang, Junxiang; Wang, Lu; Xiang, Ying et al. (2016) Using an in vitro xenoantibody-mediated complement-dependent cytotoxicity model to evaluate the complement inhibitory activity of the peptidic C3 inhibitor Cp40. Clin Immunol 162:37-44

Showing the most recent 10 out of 186 publications