Our broad goal is to clarify mechanisms of host anti-viral innate immune responses in mammals in vivo. To date, we do not fully understand how viruses are recognized when they invade the mammalian host. We have extensively studied the roles of intracellular RNA virus receptors of the Retinoic acid-inducible Gene-l (RIG-I) family and their signaling pathways, and the relationship between the RIG-I family and other pattern recognition receptors, notably Toll-like receptors, in the recognition of viruses. The receptor(s) that induce type I IFN in response to cytoplasmic DNA of viral origin have yet to be identified. Recent studies suggested that membrane trafficking as well as small organelle such as endoplasmic reticulum and Golgi apparatus are important for the intracellular viral DNA recognition by the innate immune system. Further, transcriptional and post-transcriptional regulation are important for controlling initial responses to viruses. In the proposed projects, we will exploit mouse reverse genetics to understand the functions of genes that are potentially involved in anti-viral immunity, focusing on 3 major topics. First, we will try to identify molecules potentially involved in intracellular DNA virus sensing and in the control of trafficking of DNA receptors and signaling molecules. This will be achieved by expression cloning or yeast two-hybrid screening, and will culminate in the generation of mice lacking the molecular candidates identified in screening. Secondly, we have determined that both spatial and temporal regulation of individual molecules contributes in an important way to DNA signaling. In this new proposal, we will more focus on the cell biological aspects in anti-viral responses. We will analyze trafficking of molecules potentially involved in antiviral host defense in living cells using equipment such as structured illumination microscopy (SIM)/photo activated localization microscopy (PALM) and single molecule imaging techniques. We will also study the movement of immune cells and their interactions in tissues after viral infection. The Immunology Frontier Research Center at Osaka University is aiming to integrate cutting-edge imaging techniques in immunology research. Mutant mice established by mouse forward genetics by Dr. Bruce Beutler's group will be brought to Osaka, and the role of specific molecules in membrane trafficking will be analyzed by our microscopic techniques. Third, we will generate knockout mice targeting genes potentially involved in transcriptional and post-transcriptional gene regulation of anti-viral responses. Additionally, we will generate knockout mice potentially involved in innate anti-viral immune responses identified by forward genetics either in mice or in Drosophila.

Public Health Relevance

Virus infection is a serious threat in the world as exemplified by relatively common outbreaks of new strains of influenza. This project is aimed at understanding basic mechanisms of antiviral immune responses. This project will help to implement novel therapeutic approaches against viral infectious diseases.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
United States
Zip Code
Marques, João T; Imler, Jean-Luc (2016) The diversity of insect antiviral immunity: insights from viruses. Curr Opin Microbiol 32:71-6
Lamiable, Olivier; Arnold, Johan; de Faria, Isaque Joao da Silva et al. (2016) Analysis of the Contribution of Hemocytes and Autophagy to Drosophila Antiviral Immunity. J Virol 90:5415-26
Lamiable, Olivier; Kellenberger, Christine; Kemp, Cordula et al. (2016) Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila. Proc Natl Acad Sci U S A 113:698-703
Beutler, Bruce (2016) Innate immunity and the new forward genetics. Best Pract Res Clin Haematol 29:379-387
Zhang, Zhao; Turer, Emre; Li, Xiaohong et al. (2016) Insulin resistance and diabetes caused by genetic or diet-induced KBTBD2 deficiency in mice. Proc Natl Acad Sci U S A 113:E6418-E6426
Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui et al. (2015) Real-time resolution of point mutations that cause phenovariance in mice. Proc Natl Acad Sci U S A 112:E440-9
Mager, Lukas F; Riether, Carsten; Schürch, Christian M et al. (2015) IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms. J Clin Invest 125:2579-91
Girardi, Erika; Lefèvre, Mathieu; Chane-Woon-Ming, Béatrice et al. (2015) Cross-species comparative analysis of Dicer proteins during Sindbis virus infection. Sci Rep 5:10693
Kozaki, Tatsuya; Takahama, Michihiro; Misawa, Takuma et al. (2015) Role of zinc-finger anti-viral protein in host defense against Sindbis virus. Int Immunol 27:357-64
Paro, Simona; Imler, Jean-Luc; Meignin, Carine (2015) Sensing viral RNAs by Dicer/RIG-I like ATPases across species. Curr Opin Immunol 32:106-13

Showing the most recent 10 out of 73 publications